Improving hardwood of durable eucalypts

Yanjie Li Gayatri Mishra Clemens Altaner

University of Canterbury NZ School of Forestry

High quality products

- Posts (agricultural industries)
- Poles / cross-arms (power companies
- Wharf timbers
- Decking / outdoor furniture
- Flooring ...

Only heartwood is durable and has colour

Heartwood

Sapwood

Heartwood

8-year old E. bosistoana

Variability

Large trees are not necessarily the most valuable

 Screen for heartwood quantity

Heartwood quality

Quality

- Durability
- Colour

Highly variable

Table 2. Performance of stakes cut from 5 trees, after 14 years in the ground.						
Species	Tree 1	Tree 2	Tree 3	Tree 4	Tree 5	Total stakes remaining per species
E. vilularis E. muelleriana E. globoidea	5 2 4	0 (av. life 7 yr) 1 6	3 2 2	0 (av. life 5.7 yr) 1 0 (av. life 4 yr)	2 0 (av. life 8 yr) 1	10 6 13

Page, Foster, Hedley (1997) What's new in Forest Research 245. New Zealand Forest Research Institute

Ensure quality

Reduce variability in a breeding programme

• Large sample numbers

Extractives

- Key factor for durability and colour
 - \rightarrow Proxy measurement of heartwood quality
- Variable

 \rightarrow 4-yr *E. bosistoana*: 1.4 - 15.0 (wt%)

Sampling – Tree corer

Battery powered

• Fire safety

Light-weight

• Less fatigue

Quick

< 60s per tree

14 mm core with 'small' wound

Bark

Sapwood

Heartwood

Transition zone

Heartwood

Cell nuclei – bark to bark

6-year old E. bosistoana

True heartwood 4 - 6 cm: parenchyma cells dead (no nuclei)

True heartwood

	1 cm	2 cm	1 3 cm	4 cm	5 cm	6 cm	7 cm	8 cm
Position	1 cm	2 cm	3 cm	4 cm	5 cm	6 cm	7 cm	8 cm
Starch (KI stain)	Yes	Yes	Yes (some)	No	No	No	Yes (some)	Yes
Nuclei (histone labelling)	Yes	Yes	Yes	No	No	No	Yes	Yes
Tyloses	No	No	Yes (forming)	Yes	Yes	Yes	Yes (forming)	No
Tissue type	Sap wood	Sap wood	Transition zone	Heart wood	Heart wood	Heart wood	Transition zone	Sap Wood

- ~1 cm transition zone
- True heartwood in 6-year old E. bosistoana
- Allows to assess heartwood at this age

Heartwood quantity

7-year old E. bosistoana 3 sites, >1000 trees

Measuring extractive content (EC)

Extraction

- Slow
- Labour intensive

NIR

- Measures sample chemistry
- Used in agriculture (e.g. protein content of grains)
- Quick (seconds)
- No sample preparation (solid wood cores)
- Needs calibration

Calibration of NIR for extractive content (EC)

E. bosistoana E. argophloia working on E. globoidea

RMSE ~1% independent of

- grain
- particle size
- (air dry) MC

Extractive content in heartwood

7-year old *E. bosistoana* 3 sites, >1000 trees

Typical heartwood gradient

- Radial extractive content gradient
- Reinforcing possibility to improve wood quality early

Environment and heartwood formation

Most heartwood Biggest trees

	Lawson's East	Lawson's North	Craven's Road
Heartwood diameter (mm)	5	32	16
Sapwood diameter (mm)	64	60	81
Core diameter (mm)	76	91	104

Need to include heartwood into site-species and growth & yield models

Durability

Selections for high extractive content

- Allows incorporation of heartwood quality into breeding programme (assess large number of samples)
- Early assessment (smaller samples)
- Increases probability of quality (durable) heartwood in selected trees

Need to certify durability of selection

- Manageable number of samples
- Better outcome
- Independent laboratory
- According to (export market) standards
- Larger samples needed (older trees)