Minimising growth-strain to improve processing

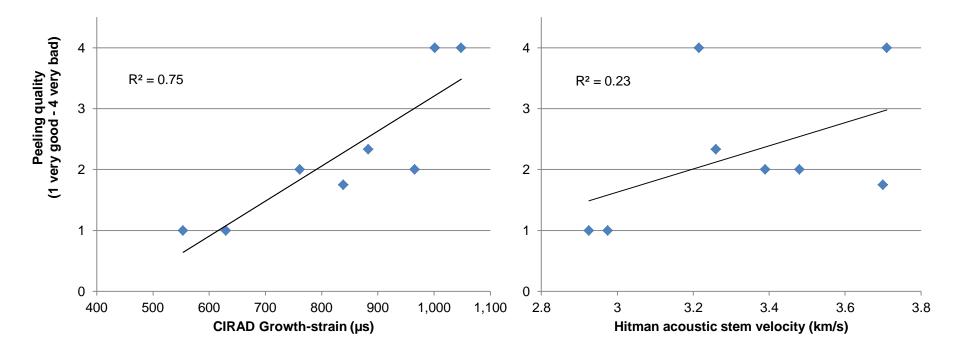
Nick Davies Fei Guo Clemens Altaner

University of Canterbury NZ School of Forestry

Growth-strain

- Distortion and splitting of logs
- Low recovery
- Plantation eucalyptus only grown for low value chip market

Peeling trial


10 trees (26 logs) 30-year old E. globoidea

- Some logs yielded quality veneer
- Veneer from other logs showed splitting

Cause of veneer splitting

 Peeling quality correlated to growth-strain not acoustic velocity (MoE)

Reducing growth-strain

Breeding

- Will solve/reduce problem permeantly
- Only for the future resource

Segregation

- Segregating (low growth strain) logs suitable for solid wood processing from the chip resource
- For existing resource and potentially to identify problem logs in future resource
- Technology does not currently exist (non-destructive, fast and robust)

Processing

Reducing processing by heat, microwave or other treatment

 \rightarrow ongoing cost, never made work economically

Obstacle

Measurement

- Releasing surface strains & assessing with strain-gauges
- 30 min per tree
- Destructive

Breeding

- Need to assess 10,000s of trees
- Fast, cheap

Segregation

• Non-destructive, fast

Breeding

SFF 'Minimising growth-strain to improve processing'

Partners throughout the wood chain

• seed producers, nurseries, small & large growers, processors, end-users, state, university

Screening NZDFI breeding population for growth-strain

- E. bosistoana; E. argophloia; E. tricarpa; E. quadrangulata
- >300 families / ~20,000 trees

Establish improved breeding population via rooting of cuttings

• Possible early deployment of improved material

Splitting test

- Developed over the last 6 years
- Rapid test of growth-strain
- Direct assessment of the problem not indirectly a cause (i.e. surface growthstrain)
- Works in a breeding programme

Process

Heritability

81 families; 4032 trees

	Strain	Diameter	Density	Stiffness	Vol. shrinkage	Height	Ac. vel.
Growth-strain	0.24						
Diameter		0.58					
Density			0.67				
Stiffness				0.71			
Vol. shrinkage					0.40		
Height						0.72	
Ac. vel.							0.76

Correlations

	Strain	Diameter	Density	Stiffness	Vol. shrinkage	Height	Ac. vel.
Growth- strain	0.24	0.00	-0.09	0.40	-0.06	0.10	0.51
Diameter		0.58	-0.24	-0.28	-0.20	0.93	-0.21
Density			0.67	0.46	0.19	-0.17	0.14
Stiffness				0.71	-0.06	-0.15	0.94
Vol. shrinkage					0.40	-0.35	-0.16
Height						0.72	-0.08
Ac. vel.							0.76

Expected gain

New breeding population:

- Top 25 % keeping broad genetic base (within-family selection)
- Selected mainly for growth-strain and diameter

	New breeding population multivariate	Top 1% univariate	Mean
Growth-strain (µs)	-108	-912	2072
Diameter (mm)	3.1	13.6	36
Density (kg/m ³)	-6.6	-88.5	815
Stiffness (GPa)	-0.42	2.6	11.2
Vol. shrinkage (%	-0.2	-4	20
Height (mm)	231	944	2,388
Ac. vel. (km/s)	-0.06	0.44	3.69

Segregation

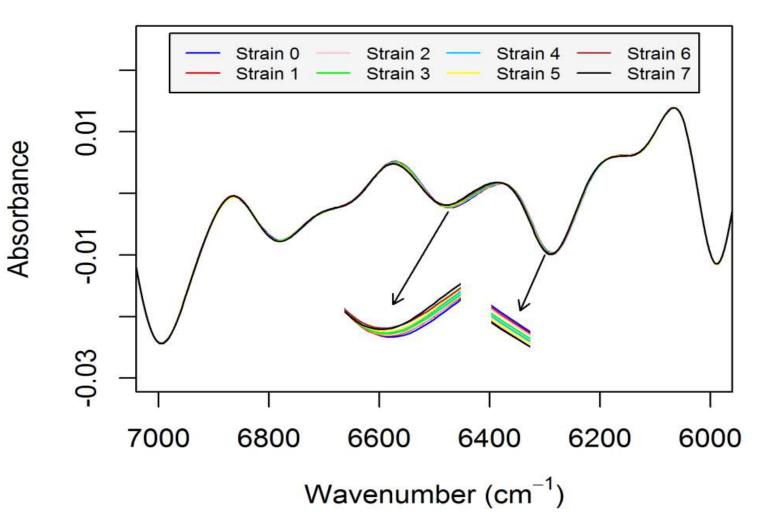
Identifying low growth-strain trees in the existing/future resource

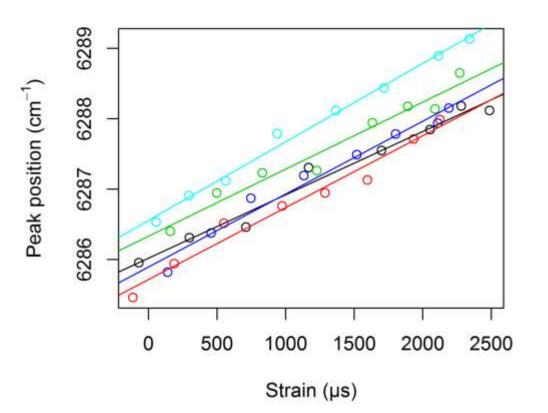
- In mill/in forest screening
- Better value recovery


Requirements

- Non-destructive
- Fast
- Work in an industrial setting

Molecular strain


• Macroscopic strain is reflected in molecular strain



Effect of strain on NIR spectra

Band shifts at 6465 cm⁻¹ and 6286 cm⁻¹

Accuracy of NIR dry wood – lab conditions

- Linear relationships between peak positions and strain levels
- Mean slope: 1.04 ×10⁻³ cm⁻¹/με
- Accuracy of measurement: ~0.3 cm⁻¹
- Expected band shift due to growth-stress: ~5 cm⁻¹