

Veneer and LVL from New Zealand grown *Eucalyptus globoidea*

Fei Guo, Clemens Altaner NZ School of Forestry, University of Canterbury

Background

A 350 m timber skyscraper proposed by Sumitomo Forestry

53 m tall timber building Vancouver, Canada

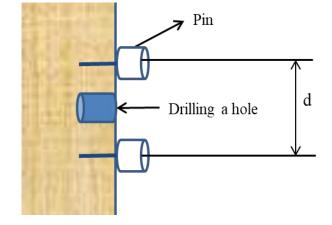
Potential of NZDFI eucalyptus

- High stiffness
- Durability: Preservative-free

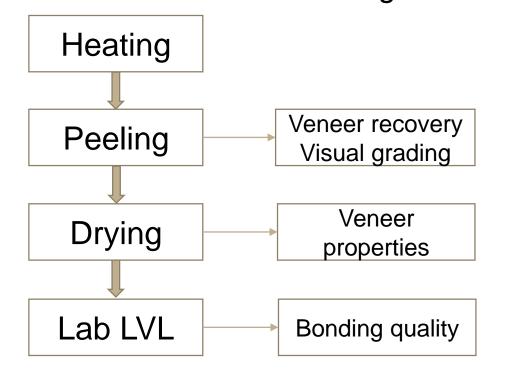
Species	Air-dry density at 12% MC (kg/m3)	MoE (GPa)	MoR (MPa)		
E. nitens	700	13	99		
E. boisistoana	1100	21	163		
E. quadrangulata	1030	18	163		
E. globoidea	880	17	133		
P. radiata	480	9.1	76		

Note: Data from Australian old-growth trees (Bootle, 2005).

Growth-stress


 Growth-stresses are also related to internal checking during drying, board distortion during sawing etc.

Methods


o Nine trees (30-year-old)o 26 logs (2.7 m long)

- o Growth-strain measurement
 - CIRAD method
 - 4 positions per log

Rotary peeling and veneer evaluation

- Nelson Pine Industries (NPI)
- Veneer recovery= $\frac{\text{veneer volume}}{\log \text{volume}} \times 100\%$

1) 100% eucalypt; 2) 50% eucalypt + 50% pine

Methods

o Veneer properties

- Splitting length
- Dried density and MC
- Shrinkage
- Dynamic MoE

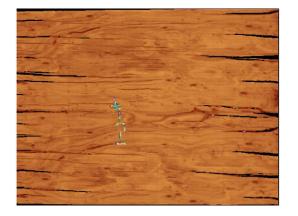
o Bonding quality

- AS/NZS 2269.0
- Mean ≥5, Min≥2

Gluelines with bond quality of 4 (top) and 0 (bottom)

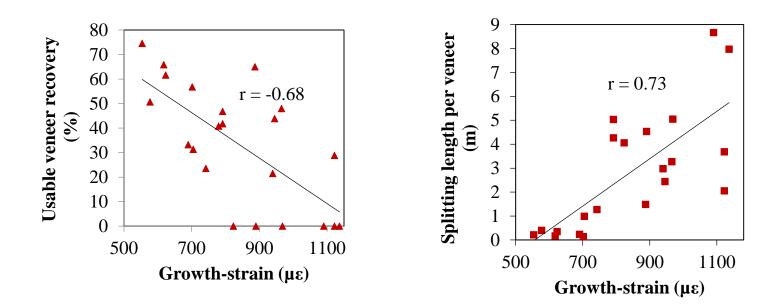
Results

o Veneer recovery and splitting


	Recovery (%)	Useable veneer (%)	Strain (με)	Splitting length per veneer (m)
Mean	54.5	33.4	839.4	3.01
SD	14.2	23.7	181.7	2.57
Minimum	23.6	0.0	553.9	0.15
Maximum	74.5	74.5	1136.8	8.66

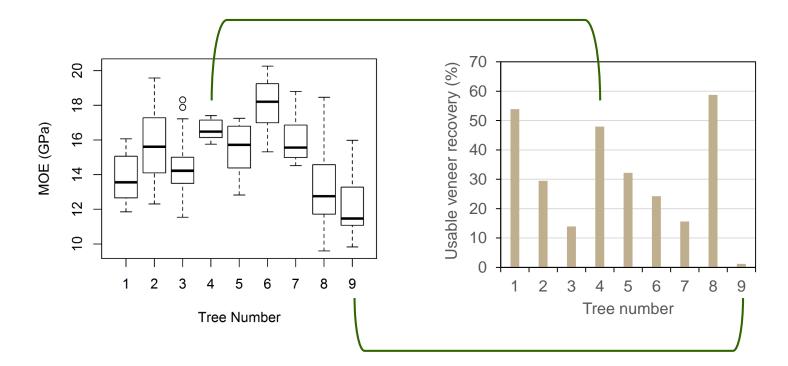
Note 1: Average recovery of radiata pine: ~70%. Eucalypt had greater peeler core and clipper wastes.

Note 2: Veneers were graded to face, core, composer and waste classes; Face and core classes were considered as usable veneers.


Veneer recovery and splitting

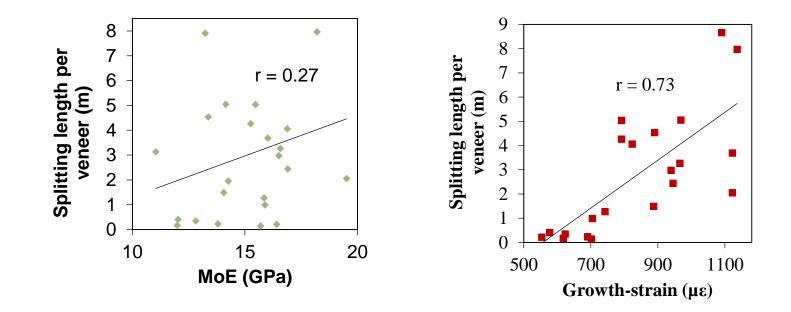
Face grade veneer with no splitting (left) and composer grade veneer with severe splitting (right)

Veneer recovery and splitting


Dependence of veneer recovery and splitting length on growth-strain

Properties of E. globoidea veneer

	Dried density (kg/m ³)	Moisture content (%)	Shrinkage (%)	Dynamic MoE (GPa)
Mean	688.13	7.31	9.85	15.14*
SD	68.55	1.09	0.77	2.05
Minimum	557.41	5.51	8.46	11.04
Maximum	824.00	9.32	11.31	19.51


Note: *Estimated static MoE: ~13 Gpa; Shrinkage for *P. radiata*: 4.4% ~ 6.4%.

Properties of *E. globoidea* veneer

Note: Significant differences (P < 0.001) between trees.

Properties of *E. globoidea* veneer

Association between veneer splitting and MoE as well as growth-strain

Bond quality

Bond tests of LVL made from E. globoidea veneers

Veneer	Grade	Density	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	Mean
	12GPa	640.51	5	1	4	1	2	2	3	0	1	2
	16GPa	696.92	9	4	5	7	7	6	6	1	5	6
	16GPa	702.52	8	3	7	8	8	9	7	2	8	7
Euca	16GPa	806.83	3	0	5	2	1	2	1	1	1	2
	14GPa	809.22	3	2	4	3	1	1	1	0	3	2
	17.5GPa	860.05	7	0	1	1	5	7	5	0	2	3

Bond tests of LVL made from E. globoidea and P. radiata veneers

Veneer	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	Mean
	E-R	R-E	E-R	R-R	R-E	E-R	R-E	E-R	R-E	Iviean
G4 Rad + Euc A	8	5	1	9	8	6	8	6	9	7
G4 Rad + Euc B	6	4	2	8	8	6	7	0	9	6
G2 Rad + Euc A	4	3	3	9	7	5	8	9	9	6
G2 Rad + Euc B	5	2	1	9	7	7	8	3	8	6

Note: Bond quality range from 0 to 10, with 0 is the worst and 10 the best.

Conclusions

- Usable veneers for structural products could be obtained from E. globoidea at yields up to 74.5%, but variation was large.
- A technical solution for gluing E. globoidea needs to be developed.
- Growth-strain reduced veneer recovery by splitting, largely independent of stiffness. A breeding program could potentially address this problem by selecting families with low growth-strain levels.

Acknowledgement

o Financial funding

- MPI: Sustainable Farming Fund (SFF407602)
- CSC: Chinese Scholarship Council

o Acknowledgement

- Richard Barry (NPI, Technical Manager LVL)
- Paul Millen (NZDFI, Project manager)
- Denis Hockings