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Abstract 

Plantation forests play a major role in satisfying many forestry needs such as demand for wood 

and different ecosystem services, which are projected to increase in the future. In New Zealand, 

the plantation forestry industry is dominated by Pinus radiata, which comprise approximately 90% 

of the net stocked area. Diversification of the New Zealand plantation forest estate by introducing 

new species is prudent, especially in arid parts of the country where Pinus radiata growth cannot 

achieve its full potential. Several Eucalyptus species are potential alternatives to Pinus radiata.  

However, there is currently very little information on their growth dynamics.  

 Forest growth and yield models are used to understand the growth dynamics of forest trees 

and are generally mensurational models for mature stands created from inventory data that span 

several years. Growth models of plantation trees at juvenile ages can generate information useful 

for plantation establishment, but such models are rarely created. Although mensurational growth 

and yield models project and create useful information to help management decisions, they provide 

little understanding of ecophysiological tree growth process. However, ecophysiological process 

information is important, especially in young plantations. This information can be created through 

process-based models, but these models are data intensive. Therefore, combining the two 

modelling approaches through hybridisation can give access to both mensurational and process-

based modelling information, without violating basic growth and yield modelling assumptions. 

 Most existing growth and yield models are developed at stand level or individual tree-level, 

and productivity of the site is assumed to be homogenous due to silvicultural management and site 

preparation practices. However, in most sites growth is not homogenous throughout, especially 

juvenile plantation growth. Therefore, it is important to explore the factors affecting plantation 

growth within stands. 
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 This doctoral thesis investigates and develops models that include within and between 

stand factors for juvenile Eucalyptus bosistoana and Eucalyptus globoidea by using a hybrid 

ecophysiological modelling approach. The study further tests and compares different hybridisation 

approaches. It concludes with a preliminary mature-stand mensurational growth and yield model 

for E. globoidea, developed from sparse available data by use of algebraic difference approach 

(ADA) equations. 

 The availability of high-resolution digital elevation models (DEMs) is inadequate for rural 

New Zealand, including the unproductive ex-pastoral lands where this study is sited. However, it 

is important to have high-resolution DEMs for hybrid ecophysiological study of growth and yield. 

Filed surveys conducted with global positioning system (GPS) receivers, can be an efficient, useful 

and simple method for creating high-resolution DEMs. This study reports on an optimisation 

procedure for producing DEMs by comparing three non-geostatistical interpolation procedures 

carried out with field collected GNSS data. Results show that the ANUDEM interpolation 

algorithm produced DEMs with the highest accuracy. The study also reports that data density 

influences final DEM resolution. 

 Within-stand height growth and survival proportion models indicate that topographic, wind 

exposure, morphometric protection, position index, and distance from ridge top significantly 

influenced juvenile height growth and survival proportion. These topographic indices were also 

found to be significant for between-site juvenile height growth and survival proportion, along with 

temperature. Overall, each of the final models had high precision and minimal bias, therefore they 

can predict juvenile tree height yield and survival proportion well. 

 Potentially useable light sum equations (PULSE) with augmented topographic indices were 

better than PULSE alone, or traditional hybridisation approaches, for explaining between-site 
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growth. In addition to height growth and survival predictions, these hybrid models offer many 

other uses, including generating useful ecophysiological information, and they offer an improved 

understanding of tree growth processes. 

 Finally, the preliminary mensurational growth and yield models for E. globoidea were 

developed to project growth over time with high precision and minimal error. These models create 

useful growth dynamics information for forest managers, as well as suggesting future research 

avenues for growing Eucalyptus in New Zealand.    
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1. Introduction 

1.1 Plantation forest  

In the modern era, the pressure on the world’s forests to deliver and satisfy multiple demands is 

increasing (Angelsen & Wunder, 2003, p. 3; Gustafsson et al., 2012) and approximately 30% of 

the world’s land surface is considered to be forested (FAO, 2010). Moreover, nowadays, forest 

products are promoted as environmentally friendly materials (FAO, 2014). In spite of that, native, 

“natural”, forests will continue to be preserved for their intrinsic values, as refugia for numerous 

associated organisms, and as learning hubs for research (Boyle, 1999). Different and contradictory 

expectations from society have led to conflict over forest use (Freer-Smith & Carnus, 2008). Forest 

plantations are promoted as a solution, though debates continue.  For example, Stephens and 

Wagner (2007, p. 312) called plantations  “biological deserts” and Carrere and Fonseca (2004, p. 

3) even argued that “plantations are not forests”. However, tree plantations are conceptually and 

practically established to fulfil the diverse global demands for goods and services from forests 

(Paquette & Messier, 2009).   

It can be hard to define a plantation forest (Evans, 1992), as it is often confused with 

afforestation (Kanowski, 1997). The FAO (2010, p. 212) defines “a planted forest as those forests 

composed of trees established through planting and deliberate seeding of native or introduced 

species”. Moreover, Owens and Lund (2009, p. 200) elaborate the idea of plantation forest as 

“forest by origin which still possesses features of uniformity, shape, and often the intensity of 

management, which readily distinguish them as artificial. Often although not always, they will 

have been established on land devoid of tree cover, at least in the previous 50 years”. Besides this, 

plantation forests can exhibit natural ecological processes at different scales, depending on the 

species and degree of naturalness (INDUFOR, 2012).   



 

29 
 

The planted forest has long been mentioned in history. With some early references from 

the sixteenth century in Britain, it originally started in its modern, organised form in Germany 

during the eighteenth century. In the twentieth century, major plantation establishment happened 

in the temperate and Mediterranean climatic regions. Moreover, introduction of exotic trees 

accelerated the development of plantations, and experience of these species was gained this way 

(Evans, 1999). Now in the twenty-first century, the total global plantation forest area has been 

estimated to be 264 million hectares, which corresponds to an increase in area of just over 8% 

between 2005 and 2010 (FAO, 2010). In addition, it is projected to increase at a rate of 1.8% 

annually (INDUFOR, 2012). So, it is evident that plantation forests will significantly expand to 

satisfy global needs, including a wide range of services related to forests and their associated 

societies, for example, forest protection and restoration, and ecological services such as climate 

regulation and protection of soil and water resources. These services have been explored in the last 

few decades (see, Barua et al., 2014; Charnley, 2006; Onyekwelu et al., 2011; Sedjo & Botkin, 

1997) and plantation forests are classified to serve specific purposes (Evans, 1999). However, 

production of industrial wood, which was the initial purpose of plantation forests, has increased 

and Sedjo (1999) predicted that it would grow even more rapidly in the future. 

1.2 Forest plantation establishment 

The establishment phase of a plantation is critical (Margolis & Brand, 1990): poor 

establishment may incur some extra cost. Mason (1992) suggested a conceptual model for 

plantation establishment, where the state of a stand is a function of the condition of the seedlings 

immediately after planting and their associated micro-environment, where both seedling state and 

micro-environment can be altered through management practices. Moreover, the costs incurred for 

overall management practices and site characteristics need to be considered (Figure 1.1). Further, 
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Schönau and Herbert (1989) reported species-specific silvicultural treatment and site preparation 

by means of fertilisation is required for proper establishment, which is also in line with the model. 

 

Figure 1.1 Adapted conceptual model of plantation establishment (Mason, 1992). 

  

Traditionally, the most emphasised measures of juvenile crop performance are survival and 

initial height growth (Chavasse, 1977). In plantation forests, these depend on crop characteristics 

and other factors (Mason, 1992; Millner, 2006). For example, crop uniformity (West, 1984), 

stocking (Maclaren et al., 1995), and juvenile tree stability (Mason, 1985) are considered important 

characteristics. Moreover, the success of the plantation by way of survival is an indicator, which 

is measured by the number of quality stems prior to the first thinning (Mason, 1992). The desired 

numbers of stems/ha in the final crop will determine the numbers required after establishment 

through a “selection ratio” that varies with the purposes and conditions of the plantations.  

During establishment, for measuring the growth of the stand at the beginning, the ground-

line diameter (GLD) and height of the stems are readily available after planting. However, diameter 
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at breast height over bark (dbhob) is preferable for managers as it can be a state variable when 

expressed as basal area in a growth and yield model (Garcia, 1988). 

1.3 Forest plantation site 

In the case of forest land, “site” is a well-established term often used as a primary 

ecological unit. It refers to a geographic location which is relatively homogenous in terms of its 

physical and biological environment (Bailey et al., 1978; Grey, 1980). The forest plantation site 

refers to the composition of a site’s edaphic and climatic characteristics as a whole and its potential 

to sustain plant growth with a focus on site-specific silviculture (Skovsgaard & Vanclay, 2008). 

Louw (1995, p. 165) defined forest site as “an area that requires homogenous silvicultural practice, 

regarding species choice, management and amelioration techniques, and expected yields. In 

addition, it will have relatively similar soils, climate, parent material and topography.”  

The forest site plays an important role as one of the principal modulators of survival and 

growth at different scales (Radford et al., 2002). One of the main components of a site is soil. The 

soil (Burdett et al., 1983; Koch et al., 2004) and its microorganisms flourish in the environment 

by developing plant-soil interactions and regulating nutrient cycling, gas exchange and 

transformation of aqueous solutes (Bohlen et al., 2001; Mooney et al., 1987).  

Site preparation can help to correct site problems. For example, Mason (2004) reported 

that plant height growth was directly related to soil cultivation and fertilisation. Moreover, forest 

floor heterogeneity regulates plantation establishment and growth and can be a consideration 

during forest management decision making (Bartels & Chen, 2009; Nambiar, 1996). 

Another component that directly regulates site condition, and also influences the soil, is 

climate. Parton et al. (1987) reported climatic effects on soil properties. Soil gas exchange and 

water potential are influenced by climate, particularly associated air temperature, wind, and 
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precipitation (Mooney et al., 1987). Ralston (1964) considered these as meteorological variables. 

The effects produced by meteorological variables can vary on a small scale in ways that directly 

affect forest productivity.   

1.3.1 Site productivity  

Variation in site capability to produce high yields has been a subject of continuous interest. 

Some sites support luxuriant forest, while others are capable of supporting only poor forest, and 

this is related to the site productivity (Czerepko, 2008). Forests proceed through a faster 

development sequence on highly productive sites (Franklin et al., 2002) and toward a more 

complex structure (Larson et al., 2008). The terms “site quality” and “site productivity” are often 

interchangeable, though they are not synonymous. Site quality is a descriptive measure of site 

determined by subjective methods, often by visual assessment into a relative classification, 

whereas site productivity is a general term for the potential of certain species on the site to produce 

over time (Ford Robertson, 1971; Vanclay, 1992). To be specific, site quality is a qualitative 

measure, whereas site productivity is a quantitative estimate. Moreover, site productivity is more 

the potential of a particular forest stand or site to produce aboveground wood volume (Skovsgaard 

& Vanclay, 2008).  

Generally, above-ground volume production is calculated as stem wood volume for 

conifers, and sometimes it includes branch volume for broadleaved tree species (Vanclay, 1994). 

In this context site productivity is often quantified as an index, typically site class or site index. 

Such indices are defined in different ways (Bravo & Montero, 2001). Most universally used site 

indices are based on the stand height of the dominant trees at a given age (Kimberley et al., 2005; 

Louw & Scholes, 2002; Skovsgaard & Vanclay, 2013; Tesch, 1980) Indices also reflect site quality 

as the site potential to volume growth is related to site productivity. Moreover, productivity 
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depends on both natural factors inherent to the site and on management regimes. However, in a 

managed site, it is influenced greatly by the climatic and edaphic factors, as well as forest 

management (Skovsgaard & Vanclay, 2008; Skovsgaard & Vanclay, 2013). 

In a broader context, the use of stand height as an indicator of site productivity is based on 

the general belief that, in an even-aged stand, the height growth of the largest trees is roughly 

independent of stocking (Perry, 1985; Voelker et al., 2008). Moreover, all the biological and 

environmental variables that have influenced growth are considered as integrated into the indices, 

rather than examined for their explicit effects (Assmann, 1970; Ralston, 1964). This is because 

height, as a variable that can be obtained easily and correlates with a number of productivity 

measures (Skovsgaard & Vanclay, 2013). In addition, it is easy and inexpensive to measure and is 

less affected by management practices than stem diameter. However, this could only happen with 

sites where there are good management records. This implies that site productivity can be classified 

based on height growth, but there is a lot of remaining complexity especially in a site with different 

and heterogeneous information (Vanclay, 1992; Vanclay & Henry, 1988). Thus, the evaluation of 

forest site productivity involves problems of isolating biological and environmental variables and 

their quantitative effects on growth. However, researchers have incorporated additional inputs to 

make a more precise classification of site productivity (e.g., Site index, 300 index), which could 

evaluate site productivity on a more specific scale (e.g., Battaglia & Sands, 1997; Kimberley et 

al., 2005; Louw & Scholes, 2002; Woollons et al., 1997). 

1.3.2 Micro-site variation in plantation forestry 

Forests, as long term and dynamic natural resources, can be organised on different scales 

(Wiens, 1989). In most cases, forest models are simplified. The general assumption about the 

natural site conditions and site productivity that they change gradually and predictably. For this 
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reason, uni-dimensional productivity indicators such as the commonly used site index are 

employed (Vanclay, 1992). Besides this, traditionally, forest scientists and ecologists are more 

focused on large-scale variation. This is because the costs involved in quantifying variation at 

micro-scales are large, and so researchers have avoided it by sampling to capture the “mean” value 

for a site or plot. Recently, small scale variation that occurred at the level of single trees or small 

patches has been discovered (Coates, 2002; Kuuluvainen, 2002). In addition, small scale variation 

has particular roles in forest productivity (Kuuluvainen & Juntunen, 1998). However, in natural 

forest, various disturbances and practises within sites create diversity, which is much more 

complex and dynamic and has been explored in a rigorous way (Martín-Alcón et al., 2015; 

Peterson & Pickett, 1990; Runkle, 1981; Runkle & Yetter, 1987). For example, gap phase 

dynamics (Narukawa & Yamamoto, 2001; Yamamoto, 2000) and gap models (Bugmann, 2001) 

are used to study those complex micro-site characteristics for old growth forest. Lilja-Rothsten et 

al. (2008) defined micro-site as local features of the forest floor that characterise a seedling’s 

growing environment, such as substrate type, e.g. dead wood at various stages of decay or exposed 

mineral soil, or locations with a microclimate that differs from that of the surroundings, e.g. under 

a fallen tree.    

Compared to natural forest stands, micro-site variation often decreases in managed forest 

stands (Kuuluvainen & Laiho, 2004). The decreased variation is not only due to different types of 

silvicultural treatments but also to site preparation which makes the site homogenously productive 

(Mason, 2004). However, in the case of individual tree growth in monocultures, micro-site 

variation is a comparatively new and emerging discipline, especially with the introduction of the 

new geographic information system and remote sensing technology. Most often juvenile 

plantations are studied to quantify the role of the micro-sites (Kohama et al., 2006) as mature 
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plantations can modify their site with time (Maclaren, 1996). Therefore, micro-sites influence 

juvenile and mature plantations in different ways. 

1.3.3 Documented factors of micro-site variation and their role 

The study of microsite in plantation forestry has only recently advanced, and there are 

several reports from those who have tried to understand sources of variation on different scales. 

Much of the research undertaken in recent experimental trials established in different ecosystems 

were focused on within stand or micro-site variation sources (Table 1.1). Specific studies have 

shown significant effects of micro-site variation. First of all, variation is divided into two broad 

classes: spatial and temporal. Here spatial variations mainly cover the topographic and associated 

edaphic factors, whereas temporal variation mainly represents seasonal and related climatic 

variables that can also vary from year to year.  

Interestingly, to identify sources of variation, different indicators are used. Specific leaf 

area (SLA) and leaf area index (LAI) are important ecophysiological indicators used as a 

representative to quantify the sources (Nippert & Marshall, 2003; Nouvellon et al., 2010; 

Weiskittel et al., 2008). Besides this, canopy structure (Kohama et al., 2006), net primary 

productivity (NPP) (Fontes et al., 2006), mean annual increment (MAI) (Battaglia & Sands, 1997), 

and needle length for conifers (Morgan et al., 1983) are also used to measure the effects of spatial 

and temporal micro-site variation.     

From the above indicators, it is established by Monteith and Moss (1977) that light levels 

have a profound influence over plant growth. As a whole, light is found to be the most vital factor 

for both the spatial and temporal classes mentioned above. It is also true that all the other factors 

usually considered in studies of forest productivity somehow contribute to light /radiation use by 

trees. 
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The proportion of incoming light that is actively used is called radiation use efficiency 

(RUE) (Sinclair & Muchow, 1999). Nagel and O'Hara (2001) found a strong relationship between 

stand basal area and light interception. Moreover, it is reported that productivity is often correlated 

with precipitation along with temperature and day length (Binkley et al., 2013) or mode of light 

interception (António et al., 2007; Millner & Kemp, 2012). However, light use efficiency or 

radiation use efficiency (LUE/RUE) is also dependent on plant functional traits, such as leaf trait 

and age (Bond et al., 1999; Nippert & Marshall, 2003). Furthermore, light availability is highly 

varied by spatial heterogeneity (Nicotra et al., 1999). For example land sloped to face different 

aspects intercept different amounts of light.  

Soil properties can also vary greatly within a plant community and result in spatial 

heterogeneity (Robertson et al., 1988). It is well known that soil properties vary widely with 

topographic gradients (Bathgate et al., 1993; Brubaker et al., 1994; Garten et al., 1994) and 

meteorological variables. Besides the effects induced by direct topographic and soil properties, 

soil chemical properties have significant effects on RUE (Bellingham & Tanner, 2000; Heaphy et 

al., 2014). Again, there are effects of light on stand development and growth beyond those 

limitations (Montgomery & Chazdon, 2002). 

On the other hand, temporal variation represents seasonal variation, specifically differences 

in a variety of climatic factors, such as precipitation, temperature and solar radiation. Those factors 

are found to be most important, not only for the individual trees but also for the site as a vital 

modulator (Ralston,1964). 



Table 1.1 Summary of documented cases of micro-site variation with different measurement indicators and ecosystems. 

Species Environmental constraints Scale Zone Indicator References 

Pseudotsuga 

menziesii 

Aspect, Soil water limitation Within Site Distinct dry summer and 

cool, wet winter. 

Specific leaf area 

(SLA) 

Weiskittel et al. (2008) 

Hybrid spruce Aspect, Soil water limitation Within Site Moist-cold subzone of the 

interior Cedar hemlock 

biogeoclimatic zone 

Specific leaf area 

(SLA) 

Weiskittel et al. (2008) 

Pinus 

ponderosa 

Aspect, Soil water limitation Within Site Continental climate with 

long, cold winters and 

warm, dry summers. 

Specific leaf area 

(SLA) 

Weiskittel et al. (2008) 

Clonal 

Eucalyptus spp. 

Seasonal variation, Soil water 

limitation 

Within Site African savannah Specific leaf area 

(SLA) 

Nouvellon et al. (2010) 

Eucalyptus 

globulus 

Stocking density, Soil physical 

properties 

Within & 

Between Site 

Maritime Mediterranean 

climatic zone 

Net primary 

productivity (NPP) 

Fontes et al. (2006) 

Eucalyptus 

globulus 

Temperature, Soil water availability, 

Solar radiation 

Within & 

Between site 

Tasmanian and Western 

Australian climatic zone 

Mean annual 

increment (MAI) 

Battaglia and Sands (1997) 

Abies balsamea Spacing Within site - Needle length Morgan et al. (1983) 
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Pseudotsuga 

menziesii & 

Abies grandis 

Seasonal variation Within site Interior North-west USA Specific leaf area 

(SLA) 

Nippert and Marshall (2003) 

Pinus 

halepensis 

Seasonal variation, Topographic 

variables  

(Slope inclination, Aspect, 

Compound topographic index, Flow 

accumulation)  

& Stock quality 

Within & 

Between site 

Maritime to Continental 

Mediterranean 

Survival and 

Growth  

(DBH & Height) 

Navarro-Cerrillo et al. 

(2014) 

Cryptomeria 

japonica 

Light, Site slope Within site Japanese mountainous 

region 

Tree size and 

growth  

(DBH & Height) 

Kohama et al. (2006) 

Pinus 

thunbergii 

Soil properties  

(Thickness and texture)  

and topography of the site  

(Slope and undulation) 

Within site Shiga Prefecture, Japan Tree growth 

(DBH, Height and 

volume) 

Enoki et al. (1996) 
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However, plant survival and growth are complex processes, and are highly context-

dependent and species-specific (Holzwarth et al., 2013). An important role is played by the stock 

quality and spacing as there is ultimately competition for seedling survival and growth once trees 

are large enough to influence one another. The trees in any young plantation are involved in both 

interspecific and intraspecific competition (Brand, 1986; Fontes et al., 2006) and the former is 

reported to happen most likely at the juvenile stage of the plant (Liu & Burkhart, 1994).  

1.3.5 Importance of being subtle 

Site productivity, which is important for sustainable forest management, is established on 

a stand height centred hypothesis (Skovsgaard & Vanclay, 2013).In the case of forest growth 

modelling, in particular, it is considered to be one of the basic variables. However, in the modern 

era with many latest experiments and instruments (i.e., GIS & remote sensing facilities) in forest 

science, the idea needs to be revisited. It is already noted that for several species and site types, 

site index and volume growth are poorly correlated (Grey, 1983; McMurtrie et al., 1990; Watt et 

al., 2010). In addition, site productivity depends rather on natural factors inherent to the site and 

on management related factors.  

The studies mentioned above provide clear evidence of the utility of incorporating micro-

site variables into forest growth and yield modelling that includes objectives beyond maximum 

sustained yield. However, it becomes increasingly apparent that tree and stand level responses can 

vary considerably within and between sites at different intensities. Therefore, interpretations 

concerning short and long term effects must be made cautiously and by avoiding generalisations. 

Another important issue is the introduction of managed relocation under a global change 

umbrella (see, Sax et al., 2009; Vitt et al., 2010). Minteer and Collins (2010) defined managed 

relocation as a “conservation strategy involving the translocation of species to novel ecosystems 
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in anticipation of range shifts forced by climate change”. However, until now it is a debatable issue 

among scientists and conservationists and needs to be more precise in order to make decisions. 

Moreover, forestry is moving towards a system called “precision science” (Dyck, 2003), where 

the elements can be optimised in a more nuanced sense. So, a major challenge for forest managers 

and scientists is to understand stand structure and behaviour and to develop a more efficient system 

or tool to manage it. To cover all these aspects, it is important to be imaginative as well as to look 

through a more complex, subtle lens. 

1.4 Forest growth and yield modelling 

According to Vanclay (1994, p. 4), “a model is an abstraction or a simplified representation 

of some aspect of reality”. It can be both quantitative and conceptual, but all models are integrators 

of multiple fields of knowledge. Consequently, models generally have several important and 

varied uses (Vanclay, 2006; Weiskittel et al., 2011). Interestingly, from the beginning of mankind 

we have frequently used models unconsciously: we try to predict the future, and this also happens 

in the case of forest growth and yield. As forests are long-lived dynamic biological systems that 

are continuously changing (Peng, 2000), we always try to predict and assume their future growth 

in terms of a given specific unit. Growth is the dimensional change over time of one or more 

individuals in a stand (Vanclay, 1994). In that sense, forest growth and yield models are 

abstractions of the natural dynamics of trees, stands and whole forests, and may encompass growth, 

mortality and any other changes that happen in stand structure and composition (Burkhart & 

Brooks, 1990; Vanclay, 1994; Weizhong Zhao, 1999). Again, an ideal model would be one with 

which, given any stand, forecasts of some trait may be made with a high degree of precision for a 

given time horizon Curtis (1972).  
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Growth and yield modelling in forestry is a long-established approach to predict the future 

to make decisions (Weiskittel et al., 2011). It started with experience-based methods in the 1700s 

(Kimmins et al., 2008), followed by graphical methods in the 1850s in Central Europe (Assmann, 

1970). Such experience-based tools are excellent for single values (e.g., timber) but they assume 

highly generalized future circumstances (e.g., climate, soil characteristics, operation etc.) by 

keeping them unchanged. They are unable to predict multiple values and are unreliable in cases of 

significant change in circumstances. Yield tables are based on complete observations of yield 

throughout entire rotations and were constructed for important tree species (Vuokila, 1965). In 

contrast, American yield tables were based on guide curve assumptions (Monserud, 1984; Spurr, 

1951). Despite this early demonstration, the breadth and complexity of modelling efforts increased 

with advances in information technology. During recent decades, along with advances in 

mathematical statistics and rapidly developed computer technology, growth and yield modelling 

technology, and methodology moved forward significantly (Garcia, 1988; Johnsen et al., 2001; 

Kimmins et al., 2008; Peng, 2000). Functions used to describe growth and yield are compatible in 

that growth is a derivative of yield. Clutter (1963) was among the first to describe growth and yield 

systems in terms of difference equations, where future yield is expressed as a function of existing 

yield and the interval in time between the two observations. Moreover, growth and yield modelling 

started to proceed in a multi-dimensional way by focusing on several other basic ecological 

perspectives such as gap dynamics model to forecast the future of the uneven-aged forest 

(Bugmann, 2001). The dependent variables were changed on different scales from whole stands to 

individual trees, and the objectives extended from stand yield prediction to ecological process 

description.  
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1.4.1 Classification of growth and yield models  

Development of forest growth and yield models involves a cyclic procedure of data 

preparation, model construction, model validation, model implementation, and model re-

calibration with a refreshed database (Vanclay & Skovsgaard, 1997). In addition, model uses vary 

among users. Forest managers use models for management planning and decision making, whereas 

forest scientists use them for understanding underlying biological processes (e.g., carbon 

sequestration, photosynthesis mechanism). So, models can be classified in many ways by focusing 

on end use. Traditionally, they can be classified in two ways: 1) scale of focus, which means areal 

unit at which the model functions (e.g., individual or stand-level); and 2) approach of development, 

or the underlying mechanism of development (e.g., mensurational or ecophysiological) (Munro, 

1974). 

1.4.1.1 Forest models based on the level of focus 

Munro (1974), and then Burkhart and Brooks (1990), classified whole stand models into 

two major groups, depending on their level of focus. They are as follows: 1) stand-level models 

and 2) individual tree models.  

Stand-level models use stand variables such as basal area, volume, stocking, and variables 

characterising the underlying diameter distribution to simulate stand growth and yield. They can 

be further classified into growth and yield equations and size-class (diameter) distribution 

categories (Avery & Burkhart, 2015; Vanclay, 1994).  Most stand-level models are usually simple 

and robust and require relatively little data to simulate stand growth and development. However, 

they provide little or no information on individual trees within stands. They can be useful for 

modelling plantations, but not for more complex features or variables (Fox et al., 2001; Vanclay, 
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1994). Size-class models provide some information relating to stand structure and are widely used 

in uneven-aged stands to project stand tables (Ek, 1974). 

On the other hand, individual tree models use individual trees as the basic units to model 

growth of tree diameters (or basal area), heights, mortality, and possibly crown characteristics 

(Weizhong Zhao, 1999). They require detailed inputs and provide detailed outputs. They also, 

provide a useful alternative to whole stand models for irregular size-class distributions. Most 

individual tree models describe the increment of diameter or basal area and a few models predict 

diameter and height, based on differential equations (Monserud & Sterba, 1996). Individual tree 

models can be further subdivided into distance dependent and independent, based on spatial 

location of the trees. A distance-dependent individual-tree model requires measurements not only 

of tree size but also of tree location (Daniels & Burkhart, 1988; Tennent, 1982). Distance-

independent individual tree models require no spatial data about neighbours (Clutter & Allison, 

1974; Clutter & Jones Jr, 1980). Table 1.2 shows a simple comparison of these model types.  

Table 1.2 Summary of characteristics of two growth and yield models depend on the level of focus. 

Indicators Whole stand model Individual tree model 

Dependency Stand parameters Both stand and tree 

parameters 

Complexity Relatively simple, low 

dimensionality 

Relatively simple, low 

dimensionality 

Drivers Generally driven by stand 

density, age and site 

productivity 

Tree component based on 

tree dimension and stand 

parameters 

Resolution Stand-level Tree-level  

Level Holistic Reductionist  

  



 

44 
 

1.4.1.2 Forest models based on the approach of development 

A forest is a complex system and is hard to sketch through a single approach. So, the right 

approach depends on the objectives of end users, that identify the purpose at the practical level 

(Fontes et al., 2010). There are mostly two types of models, each based on their approach to 

modelling: mensurational and ecophysiological (Kimmins, 1990; Mohren & Burkhart, 1994; 

Vanclay, 1994). Most forest models have been developed using elements of both approaches. From 

this point of view, models vary across a wide-ranging and complex spectrum. Therefore, forest 

models can be categorised principally by the degree to which each approach has been emphasised 

in their development (Korzukhin et al., 1996). 

Mensurational models are derived from large amounts of field data, and describe growth 

rate as a regression function of variables such as site index, age, tree density and basal area (Clutter, 

1963). Mensurational models have often been criticised as being too simplistic and unrealistic, but 

the major strength of the mensurational approach is in describing the best relationship between the 

measured data and the growth determining variables using specified mathematical function or 

curves (Fox et al., 2001). In implementation, mensurational models require only simple inputs and 

are easily constructed. They are also easily integrated into diversified management analyses and 

silvicultural treatments and can achieve greater efficiency and accuracy in providing quantitative 

information for forest management (Burkhart & Tomé, 2012). They may be a suitable method for 

predicting short-term yield for time scales but cannot be used to analyse the consequences of 

climatic changes or environmental stress (Kimmins, 1990; Seynave et al., 2008; Shugart et al., 

1992).  

Unlike mensurational models, ecophysiological models are developed using knowledge 

gained empirically to describe underlying processes associated with growth, for example, 
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photosynthesis, respiration, carbon allocation and nutrient cycling. Ecophysiological modelling is 

defined as a procedure by which the system is analysed with a set of functional components and 

their interactions with each other and their system environment, through mechanistic processes 

occurring over time (Bossel, 2013; Mäkelä, 2003; Monserud, 2003). Actually, such a model is a 

framework for testing and generating alternative hypotheses and has potential to help accurately 

evaluate processes in the system (Blake et al., 1990). The application of ecophysiological 

modelling is reviewed in detail by Battaglia and Sands (1998). The questions being asked in forest 

management have changed, and the potential applications of the process have increased. Despite 

their benefits and applications, ecophysiological models need to be at least as precise and unbiased 

as mensurational models in order to be considered in the field of forestry (Peng, 2000). 

In essence, the weaknesses and strengths are reciprocal in mensurational versus 

ecophysiological models. It is almost always possible to find a mensurational model that provides 

a better fit for a given set of data, chiefly due to the constraints imposed by the assumptions of 

ecophysiological models (Battaglia & Sands, 1998; Mäkelä et al., 2000; Peng, 2000; Peng et al., 

2002a). The greater model complexity of ecophysiological models arising from the use of many 

submodels and prediction of growth over short time increments can cause recursion and 

compounding of errors (Pinjuv, 2006). However, mensurational growth and yield models tend to 

be too site-specific and lack the ability to make predictions under changing future environmental 

conditions (Woollons et al., 1997). Table 1.3 briefly presents the characteristic comparison of the 

mensurational and ecophysiological models.  
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Table 1.3 Comparison of major features of growth and yield models (mensurational versus 

ecophysiological) (Peng, 2000). 

Indicators Mensurational models Ecophysiological models 

End users Foresters and forest managers Researchers 

Research Intermediate High 

Complexity Low to high High 

Flexibility Intermediate Low 

Model parameters Few to many Many 

Environmental 

measured factors 

(general) 

Site index, site characteristics Climatic, edaphic and disturbance 

    

1.4.2 Hybrid models: a way to deal with complexity 

Ecophysiological models could be important tools to support decisions in forest 

management, although detailed ecophysiological models are often data-intensive and difficult to 

apply for management related applications (Blanco et al., 2005; Grant et al., 2005). The 

inflexibility of experience-based predictive models can be addressed by combining both causal 

and mensurational elements of the same model in a hierarchical procedure: more specifically, 

incorporating the key elements of both mensurational and ecophysiological approaches into a 

model that could give insight into the underlying mechanism as well as give predictions for both 

short and long term (Peng et al., 2002a). More precisely, hybrid models are a mix of 

ecophysiological and mensurational principles in models which can avoid the shortcomings of 

both approaches (Kimmins, 1990; Mäkelä et al., 2000; Peng, 2000; Weiskittel et al., 2011).  

Hybrid models have been further broken down into two basic types: simplified mechanistic 

models, and classical growth and yield models with mechanistic terms. The first type can make 

projections at a stand level and may use empirical methods as sub-models, but the main model 
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format is mechanistic in nature. The second type of hybrid model uses classical growth and yield 

methods with the addition of mechanistic predictor variables (Pinjuv, 2006). The basic idea behind 

all of these methods is that some of the parameters can be determined exactly on the basis of a 

priori information; others can be given intervals of likely variation, and some cannot be determined 

at all on the basis of current knowledge (Mäkelä et al., 2000). In other words, they combine one’s 

understanding of the ecophysiology of growth and allocation with the output of a mensurational 

model and certain other data that are generally available. This approach greatly reduces the 

calibration requirement for the different ecosystems (Kimmins et al., 1996; Mäkelä et al., 2000).  

The quality of predictions of these models would also be statistically testable via residual 

analysis to ascertain the quality of their predictions. Woollons et al. (1997) have included driving 

variables of mechanistic models such as mean temperature, solar radiation, rainfall, and soil type 

into a classical growth and yield modelling system, and have shown an improvement in predictions 

of basal area/ha over strict growth and yield curves. Snowdon et al. (1999) incorporated indices of 

annual climatic variation and photosynthesis into a growth model for Pinus radiata, and they found 

a significant improvement in short term predictions. They used predicted photosynthesis rates from 

a ecophysiological model at a single site in the forest estate as an index for growth that was added 

to a Schumacher growth curve, while Mason et al. (2011) replaced the time in traditional 

differential equations with potentially useable light sums (PULS) and found an improved fit to 

independent permanent plot data for basal area per ha. Moreover, Mason (2013) showed that 

hybrid modelling can provide useful rotation length estimates of gain from short-term site 

preparation treatments. The hybrid modelling approach essentially prevents the past patterns and 

frequencies from re-occurring in the future during stand development if the key elements and their 

interactions are changed. However, in agreement with “Occam’s razor” (Blumer et al., 1987), it is 
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decided that those elements which are logically expected to change should be included in a hybrid 

model (Kimmins et al., 2008). It also brings on board the different processes that should be 

included, or, the level of complexity with which a model needs to deal. 

1.4.3 Hybridisation strategies 

Hybrid models are formulations that mix different approaches for achieving specific 

prediction and analysis goals. Hybridisation between mensurational and ecophysiological models 

is similarly varied as a methodology for estimating forest growth. 

The investigation of hybridisation strategies to use the best features of each approach and 

satisfy modelling objectives has led to a large number of models.  In general, a hybrid 

ecophysiological, mensurational model can represent one or a mix of the following categories: 

       i. A structural hybrid approach, representing a mix of both approaches from the conception of 

the internal structure. In an increasing grade of resolution, there can be either improved 

mensurational equations or simplified physiological relationships. 

       ii. An aggregative approach, where the output of one kind of model is the input for the other, 

either by using modules or entire models to form one complex structure.  

1.4.3.1 Augmented hybridisation approach 

The augmented modelling approach was the first step towards hybridisation. Thus, much 

work has been done to improve mensurational equations by adding environmental factors, and 

hence a range of strategies has been explored. In this approach, normally physiological indices are 

integrated with the appropriate mensurational equation to test the gain. 

Woollons et al. (1997) tested the augmented effect of climatic and soil variables on quality 

of predictions of mean top height and basal area of Pinus radiata, and they found that they partially 

improved the predictions. Snowdon et al. (1999) studied the inclusion of several climatic indices 
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from two physiological models into various forms of Schumacher’s equation among which annual 

growth index was the most effective one. There are several examples of this approach (e.g. 

Henning & Burk, 2004; Mason, 2001; Pinjuv et al., 2006; Snowdon, 2002). 

1.4.3.2 Potentially useable radiation sums approach 

Radiant energy is the key driver of photosynthesis and hence the main responsible growth 

factor. But only specific bands of radiation (~ 400-700nm) are actively involved in photosynthesis, 

named  “photosynthetically active radiation (PAR)”, and only the fraction that falls directly on leaf 

surfaces is potentially available for photosynthesis (absorbed photosynthetically active radiation 

or APAR). Nonetheless, the use of the radiant resource depends on the availability of other 

necessary resources. Following this concept, net primary production (NPP) is defined by 

Landsberg and Waring (1997) (Equation 1), 

NPP = ε∑APARtmin{fθfdfk}frfFrfs                                            (1) 

where NPP = net primary productivity; ε = maximum quantum efficiency; APAR = absorbed 

photosynthetically active radiation; fθ = soil water modifier; fd = vapour pressure deficit modifier; 

tmin=minimum average monthly temperature; fk = temperature modifier; fF = fertility modifier; fS 

= senescence modifier; and fFr = frost modifier.  

Mason et al. (2007) substituted radiation sum since the time of planting for time in a non-

linear equation, but with radiation modified by adaptations of the physiological modifiers 

developed for the 3-PG model (Landsberg et al., 2001). This way, the errors related to the 

estimation and also accumulated errors from recursion were avoided (Mason et al., 2011). The 

potentially useable light term to be substituted for time is as follows (Equation 2):  

RT = ∑Rtmin{fθfd}fkfCl                   (2) 
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where RT = potentially useable light sum; Rt = radiation in month; tmin=minimum average 

monthly temperature; fθ = soil water modifier; fd = vapour pressure deficit modifier; fk = 

temperature modifier; and fCl = light competition modifier and summation in months. 

This approach was first tested by Mason et al. (2007) for Pseudotsuga menziesii and later 

for Pinus radiata (Mason et al., 2011). Results obtained showed consistent improvements in 

precision and flexibility comparing modified equations with traditional time-based equations for 

basal area (G), but not for mean top height (MTH).  

1.4.4 Modelling juvenile growth and yield 

Most models are designed for established trees from slightly before the beginning of the 

stem exclusion phase (Spiecker et al., 1996) when different tending operations are made, and 

harvest age is decided. However, some decisions need to be made earlier in the life of the stand.  

Growth at the juvenile stage of a plantation is important as well as sensitive to the 

environment and establishment procedure (Rauscher et al., 1990). The main aim of plantation 

establishment is to maximise growth response, and for that, it needs to identify the main factors 

and predict responses of trees to different sites (Mátyás et al., 2009; Weizhong Zhao, 1999). In 

this context, modelling juvenile growth is important for better understanding the whole process of 

stand development and for helping to improve a young stand. Though in terms of modelling, 

juvenile growth is less highlighted over time (Zhang et al., 1996). Moreover, juvenile growth is 

often more complex than the growth of mature stands as both inter and intra-specific competition 

occurs among the trees. Individual-tree models often focus on increment of height and diameter or 

increment of basal area (Nyström & Kexi, 1997; Zhang et al., 1996). Modelling for juvenile growth 

demands a choice between diameter or sectional area at ground level, and diameter at breast height 

(DBH) or basal area, or both. To provide compatibility with older growth models, DBH or basal 
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area is needed. Usually, no suitable individual tree volume equation is available for such young 

trees. Tree form has rarely been modelled due to the lack of availability of necessary 

measurements. Yield-age equations have been employed by most modellers (Belli & Ek, 1988; 

Mason, 1992; Mason et al., 1996) to reflect the growth response fully for different operations and 

site conditions from time of planting.  

Juvenile growth and yield can be explained as a function of site and climatic variables. 

Zhao (1999) reported juvenile yield as a function of conditions of sites, status of seedlings, 

treatments and competition forces from various weeds, and trees themselves due to the crown 

being closer. Seedling quality can be described physically and morphologically, while it can be 

altered by several factors (e.g., genetics, nursery techniques) (Mason, 2001). Hunter and Gibson 

(1984) reported that climatic and edaphic factors modified site quality. In addition, the 

microenvironmental effect needs to be taken into account as it is changed in plantations by site 

preparation (Amateis et al., 1997; Mason, 2004) and further changes with time after planting 

(Maclaren, 1996). This is expected to play an essential role for further understanding the decision-

making process. 

Some equation forms for early growth and yield of tree height, diameter, and survival have 

been proposed and used (e.g. Bullock & Burkhart, 2005; Mason & Whyte, 1997; Mason et al., 

1997; Richardson et al., 2006). The relationship issue between juvenile and older growth models 

has arisen since juvenile growth models have been formulated. But juvenile growth in relation to 

micro-site variables is yet to be modelled as previous studies concentrated on yield at a stand level. 

1.5 New Zealand dry land forest initiative (NZDFI) and two species of interest 

In New Zealand, forest industries are mostly based on plantation forestry, and interestingly 

they utilise exotic species to produce major forest products (Maclaren, 2005; Millner, 2006). This 



 

52 
 

sector is heavily dependent on Pinus radiata with a minor proportion of Pseudotsuga menziesii 

(Maclaren, 1993).  These species display several notable features, but they are not suited to some 

severe conditions, for example, increasingly dry conditions, and their end uses are limited by their 

wood properties (Apiolaza et al., 2011). Therefore, it is important to move to a more diverse 

practice by introducing new species for tackling future challenges.  

New Zealand plantation forests are established and extended on land less valued for 

pastoral agriculture (Millner, 2006), most of which are situated on the hilly parts of the country. 

The characteristic features of hill country are heterogeneity and a mosaic of microsites resulting 

from several climatic and edaphic factors, such as aspect, slope gradient, and soil variation (see, 

Gillingham & During, 1973; Lambert & Roberts, 1976, 1978; Radcliffe & Lefever, 1981). 

Moreover, the dry parts of these areas are very heterogeneous. Apiolaza et al. (2011) characterised 

the dryland areas of New Zealand as areas receiving rainfall of 500-1000 mm/year, which covers 

a large part of the country. Dryland covers a significant portion of the earth’s ecosystems (Schimel, 

2010), yet global literature has ignored this by focusing on more productive ecosystems. Generally, 

this area is used for farming, but alternatives are needed.  

The trends of managing plantation forest in New Zealand are similar to other countries, 

which produce both long and short term forest products. However, good forest management 

requires accurate information on the current growing stock and future growth potential (Peng, 

2000). This is normally obtained through several stands alone or mixed approaches, including 

forest inventories and projections through growth and yield modelling. Early growth models or 

juvenile growth models make available the opportunity for the forest managers to access the right 

information and understand the impacts of site variables (Pretzsch, 2009). Thus, they can adapt 

the right approaches beforehand efficiently and effectively. So, managers should have the best set 



 

53 
 

of information before deciding on crop establishment so that all potential benefits can accrue 

(Mason, 1992). 

Eucalyptus species play only a minor role in New Zealand forestry, as they have failed to 

achieve the critical mass to be economically viable (Apiolaza et al., 2011). Normally, they are 

intolerant to environmental conditions to which they are not adapted (Barr, 1996; Johnson & 

Wilcox, 1989), but Barr (1996) reported that several species of this genus have the potential to be 

introduced in unusual conditions in New Zealand. Some of the species of Eucalyptus produce 

wood of hard, strong and naturally durable quality, while the others produce decorative wood 

(Menzies, 1995).   

The New Zealand Dryland Forest Initiative (NZDFI) begun in 2008 aiming to provide and 

advocate sustainable and commercially oriented alternative species to New Zealand forest 

industries. The main aims of this project are to breed and improve drought tolerant and ground 

durable Eucalyptus species which do not require chemical treatment (Van Ballekom & Millen, 

2017). Since the beginning of the NZDFI, the coast grey box (Eucalyptus bosistoana) and white 

stringybark (Eucalyptus globoidea) were considered two promising species among several that 

have been tested (Millen, 2006).  

Eucalyptus bosistoana is commonly known as coast grey box (or Gippsland grey box) and 

is the largest of the box group of Eucalyptus. It is commonly 30-40m in height and up to one meter 

in diameter at breast height (DBH), while some trees attain 60m in height (Williams & Woinarski, 

1997). The tree occurs naturally within the latitudinal range of 33-37.5°S at elevations between 

sea level and 500 m. The distribution of E. bosistoana is confined to mixed coastal forests along 

the South East coast of Australia (Boland et al., 2006). The preferable climatic condition is warm 

humid to sub-humid, with the mean maximum temperature of the hottest month range 24-29°C 
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and the mean minimum of the coldest month around 1-6°C. It can grow in deep soil, with moderate 

salinity. Moreover, it can resist a few frosty occurrences as well as waterlogged and somewhat dry 

conditions. In addition, it shows a marked preference for good soil quality (FAO, 2015). The wood 

of E. bosistoana is used for heavy engineering construction, poles, cross-arms, railway sleepers 

and fences (Bootle, 1983). It is very tough and durable, and because individual trees can grow tall 

and straight, this species has been sought after for milling into poles and for uses such as heavy 

construction (Boland et al., 2006). Its green wood has 103 MPa modulus of rupture, 17GPa 

modulus of elasticity, hardness of 1180kN and basic density of 880kg/m3. Overall the wood is 

considered a highly durable timber (class 1 and 2 Australian standards, AS5606-2005) (Nicholas 

& Millen, 2012a).  

Eucalyptus globoidea, commonly known as white stringybark, attains 25-30m in height 

and 1 m DBH, with straight trunks which may be up to two-thirds of the tree height. The crowns 

are usually compact and moderately dense (Boland et al., 2006). It is a common tree in central and 

southern coastal New South Wales, on the edges of the tablelands adjacent to the coastal areas in 

central and lower northern parts of the state, and also in eastern Victoria. The species is distributed 

from latitude 30-38°S and from near sea level to about 1100m in altitude. The suitable climatic 

range is warm sub-humid to humid with the mean maximum temperature of the hottest month in 

the range of 22-31°C, and the mean annual rainfall of about 650-1400mm with relatively even 

distribution (Boland et al., 2006). This species can grow on various topographical sites from gently 

undulating country and hills near the coast to mountain slopes at the junction of the tablelands and 

the coastal areas. Soils are commonly sandy, but the species also occurs on gravelly loams and 

clays and on skeletal soils. It can grow in less productive sites (Bulloch, 1991), but not on sites 

with poor drainage capacity (Barr, 1980). The timber of E. globoidea is used for building 
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framework (Bootle, 1983). The sapwood is resistant to Lyctus borers; the heartwood is light brown, 

occasionally light pink, moderately fine textured, and generally straight-grained; density is about 

900 kg/m3. In Australian standards (AS5606-2005) it is considered as a highly durable timber class 

1 or 2 (Nicholas & Millen, 2012b). 

1.6 Objectives and thesis structure 

 The main objectives of this study are (i) to explore the edaphic, topographic and climatic 

factors that influence the growth dynamics of juvenile Eucalyptus plantations by considering 

within and between site variability, and (ii) to develop a preliminary field applicable mensuration 

growth and yield model for E. globoidea from the available data. Furthermore, this study aims to 

explore different modelling strategies to enhance the understanding of the overall processes. The 

assessment of these objectives has required different approaches and tools, from field inventory, 

geographic information system (GIS) based topographic characterisation. 

 The thesis has been structured in chapters, written in the format of scientific articles. It 

consists of an overall introduction, six research chapters, and a general discussion and conclusion. 

Different ideas and topics touched by this thesis were briefly discussed under introduction, 

associated literature and justification of the study were presented with each research chapter. An 

overall organisation of the research chapters is presented by Figure 1.2. In the first research chapter 

(Chapter 2) three different non-geostatistical interpolation methods are tested to optimise the 

digital elevation model (DEM) from GNSS (RTK-GPS) acquired data. The DEM is used in 

subsequent modelling chapters.  

 The next chapter (Chapter 3) focuses on the within-site variables in relation to juvenile tree 

height and survival. The main aims of this chapter are to find out the most important variables that 

influence juvenile tree height and survival and model them by applying an augmented time-based 
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approach. Within-site topographical attributes, temperature and soil rooting depth are tested from 

three different sites for E. globoidea and E. bosistoana. 

 In Chapter 4, between sites variables (soil, climatic and topographic variables) are 

identified and modelled for height growth and survival by applying the same procedure described 

in Chapter 3. Chapter 5 explores and develops the modelling by applying a Potentially Useable 

Light Sum Equations (PULSE) approach and augmented PULSE approach. For these studies, a set 

of 84 permanent sample plots (PSPs) are used from the NZDFI PSP network, which were located 

in 25 different sites in New Zealand. Chapter 6 presents a comparative study on different 

approaches of juvenile tree height growth and survival model based on the results presented in 

Chapter 4 and 5. 

 

Figure 1.2 General organisation of the research chapters in the thesis based on the data, stand status 

and different modelling strategies. 
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The juvenile height growth and survival models are useful for plantation establishment, 

whereas the mature stand models are useful for the later stage of the plantation. The mature stand 

models can help to project future growth and plan the silvicultural regime. Chapter 7 presents a set 

of mature stand preliminary growth and yield models for E. globoidea in New Zealand. The main 

aim of this chapter is to build a field compatible mature stand growth and yield model from the 

available data.  

Finally, Chapter 8 presents a general discussion of the key findings of the thesis and an 

overall conclusion.  
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A comparative study of three non-geostatistical methods to 

optimise digital elevation model interpolation* 
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2. A comparative study of three non-geostatistical methods to optimise digital elevation model 

interpolation. 

2.1 Introduction 

A digital elevation model (DEM) is a mathematically derived representation of the Earth’s 

surface. It is produced by collecting elevation point data and then interpolating those points to a 

surface. There are several methods to capture the data for DEM interpolation. For example, field 

surveys, photogrammetry techniques, radar, and aerial laser scanning (ALS) (Peralvo & 

Maidment, 2004) have all been proposed. This latter method, also known as  LiDAR (Light 

Detection and Ranging) using unmanned airborne systems (UAS) or fixed-wing aircraft has 

become the de facto standard for producing high-resolution DEMs (Koci et al., 2017; Liu, 2008; 

Traganos et al., 2018; Vaze & Teng, 2007). This is because other data capture methods (i.e. the 

field survey) have several limitations, for instances, the coverage, time constraints and 

accessibility. Whereas, ALS enables accurate measurement of elevation for a dense set of points 

on the Earth’s surface for a large area in a short time period. Moreover, LiDAR point elevations 

can have +/- 0.5cm (vertical) and +/- 0.5cm (horizontal) accuracy and point densities typically 

between 0.5 - 50 points per square meter (Kodors, 2017). LiDAR point data are interpolated into 

a DEM, with typical spatial resolutions of < 1m.  

Despite their accuracy, coverage, and efficient data capture, LiDAR acquisitions are costly 

and require expertise to analyse (Morgenroth & Visser, 2013). As such, LiDAR data are commonly 

only acquired for specialist land-based applications including forestry (Morgenroth & Visser, 

2013), mining (Kurz et al., 2009), agriculture (Tagarakis et al., 2018), and urban planning (Yu et 

al., 2010). However, even within these industries, the drawbacks of LiDAR acquisition and 

analysis can preclude their common use (Baltsavias, 1999). As such, there remains a need to 
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explore less costly, simple alternatives to DEM generation for many small-scale applications. Such 

alternatives would be especially useful in developing regions and small-scale areas which for 

which LiDAR acquisitions are uncommon.  

One such alternative, field surveying, can be used to describe topography. Field surveys 

using a global navigation satellite system (GNSS) receiver are methodologically simple. Since the 

initial launch of the global positioning system (GPS) in 1973 (Parkinson et al., 1996), GNSS has 

developed progressively, resulting in increased use by scientific communities and the general 

public. Improvements include a reduction in costs (Pick, 2006), improved positional accuracy and 

precision (Hofmann-Wellenhof et al., 2012). Moreover, since GPS became fully operational in 

1995,  worldwide coverage has helped to ensure that GNSS surveying and mapping are possible 

in the world’s developing regions (Groves, 2013). Point elevations are acquired across a landscape 

by a GNSS receiver and subsequently interpolated to a DEM, in much the same way as LiDAR 

data are interpolated into a DEM. GNSS (e.g. GPS, GLONASS, Beidou-2 Navigation Satellite 

System, and Galileo) and regional navigation satellite systems (e.g. Navigation with Indian 

Constellation (NAVIC)) are designed to estimate the geographic coordinates of a receiver by 

trilateration with three or more satellites. GNSS data are now commonly used for numerous 

applications requiring accurate positioning, including precision agriculture (Neményi et al., 2003) 

and forestry (Olivera et al., 2016), and surveying (Gao, 2007).   If GNSS elevation points are to be 

used to generate accurate DEMs, there remains a need to optimise various aspects of the process 

to minimise the error reported in previous studies (Yao & Clark, 2000). 

Errors in digital elevation models are undesirable, especially because they can be 

perpetuated through derived topographic surfaces, including aspect, slope, hillshade, and surface 

curvature. Moreover, DEMs are critical in their role for normalising digital surface models, such 
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that errors in a DEM will result in corresponding errors in digital surface models and canopy height 

models. Gong et al. (2000) grouped the factors which could influence the DEM quality into three 

classes: i) accuracy, density, and distribution of the source data; ii) characteristics of the surface; 

and iii) the interpolation process. The accuracy of the source data varies with technique, such as 

LiDAR acquisition or field surveying. Density and sampling interval of the data can be modulated 

by experimental design, data collection decisions and available time (Chaplot et al., 2006). Besides 

these, the nature of the terrain also influences the quality of a DEM through natural uncertainty, as 

irregular surfaces can be more error-prone.  

The third source of error is interpolation. Interpolation from elevation points to a surface can be 

achieved in many ways (see, Li & Heap, 2008), thus introducing potential error into modelled 

elevation surfaces. The processes of creating a surface from either initial measured points (e.g. 

IDW) or the degree of similarity of the smoothed surfaces (e.g. Splines) are called non-

geostatistical, or deterministic, methods. In contrast, geostatistical methods are based on statistics 

and probability (Erdogan, 2009; Gong et al., 2000; Li & Heap, 2011). A number of studies have 

been conducted to compare different interpolation methods based on their use for different 

disciplines (Li & Heap, 2008; Mitas & Mitasova, 1999; Robinson & Metternicht, 2006; 

Zimmerman et al., 1999). Previous studies also include a comparison of accuracy based on 

different spatial attributes such as slope, aspect, curvature and hydrologic process (Amjad et al., 

2016; Chaplot et al., 2006; Erdogan, 2009; Habtezion et al., 2016) 

The main objective of this study was to evaluate the potential for generating a high-

resolution DEM from data collected via a GNSS receiver during a field survey. This objective was 

achieved by: i)  comparing DEM accuracy for a range of spatial resolutions, ii) comparing three 
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different non-geostatistical interpolations, iii) examining the impact of data density on DEM 

quality. 

2.2 Materials and methods 

2.2.1 Study sites 

A hilly broken landscape, covered by young Eucalyptus spp. plantation, in the southern 

area of the Marlborough region, New Zealand was selected for this study (Figure 2.1). The site (-

41.7364606452187 latitude, 174.1221316582747 longitude) ranges in elevation from 10m to 82m 

above sea level (asl), has slope ranging from 13° to 32°  and covers 4.7 hectares. It has 

predominantly warm, dry and settled weather during the summer months, with daytime maximum 

air temperature ranging from 20℃ to 26℃, but occasionally rising above 30℃. Winter days often 

start with a frost, but are usually mild overall, with daytime maximum air temperature ranging 

from 10℃ to 15℃ (NIWA, 2015a).  
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Figure 2.1 Location of the experimental site. Aerial imagery overlaid on a hillshade model. 

Positional data points were collected with Trimble® R8s real-time kinetic geo-positioning 

system (RTK-GPS) by carrying a handheld receiver (‘rover’) and establishing a base station for 

differential correction (Hofmann-Wellenhof et al., 2012). According to the manufacturer, the 

RTK-GPS has a theoretical horizontal accuracy of ± 0.008m + 1ppm RMS and vertical accuracy 

of ±0.015m+ 1ppm RMS (Trimble, 2017). However, a mean horizontal error of 0.014m with 

standard deviation (SD) of 0.004m, and a mean vertical error of 0.030m with SD of 0.010m were 

found under field conditions (Koci et al., 2017).  A total of 2722 data points were collected, over 

six hours, by walking transects across the site in a general East-West direction, at roughly five-

meter intervals. The data collection was done on a clear sunny day to ensure minimum satellite 
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distortion. At each point, coordinates (eastings, northings, and elevation) were recorded. All 

coordinates were georeferenced to the New Zealand Geodetic Datum 2000.  

The train and test approach (Miller, 2005) was applied for quantitative evaluation of the 

GPS points. The collected data points were randomly partitioned into training (90 percent, n=2440) 

and validation (10% , n=282) datasets (Figure 2.2). The training dataset was randomly thinned by 

25% (n=1779), 50% (n=1220), and 75% (n=561) of its original point density (Figure 2.3 and Table 

2.1), which ranged from 0.519 points m-2 to 0.129 points m-2 (Table 2.1). 

 

Figure 2.2 Layout of the collected data points. 
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Figure 2.3 Training points were thinned by A) 0%, B) 25%, C) 50%, and D) 75%. 

Table 2.1 Summary of elevations resulting from different training data thinning intensities. 

Thinning (%) Points Elevation (m asl) Point density m-2 

Min. Max. Mean SD 

0 2440 9.749 82.139 44.316 18.516 0.0519 

25 1830 9.748 82.139 44.580 18.295 0.0389 

50 1220 9.748 82.139 44.962 18.236 0.0259 

75 610 9.765 79.495 44.442 18.336 0.0129 

  

2.2.3 Interpolation methods and parameters  

Interpolation methods have been intensively studied for producing DEMs. Kidner (2003) 

and Torlegård et al. (1986) reported two major research areas: (1) developing new interpolation 
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methods, and (2) optimising the selection of existing interpolation methods. There are a number 

of existing geographic data interpolation methods with various approaches and uses (Li & Heap, 

2008; Li & Heap, 2011). Lam (1983) categorised interpolation as either point or aerial methods,  

Shi and Tian (2006) suggested linear, non-linear and hybrid methods, while other authors have 

suggested various  physically-based interpolation methods (Grimaldi et al., 2004; Grimaldi et al., 

2005; Niemann et al., 2003; Sandmeier & Itten, 1997). However, Li and Heap (2014) broadly 

classified all interpolation methods into two main forms, namely deterministic and stochastic 

methods. Stochastic methods integrate the concept of randomness and provide both estimations 

and associated variances and uncertainties. In a broad sense, stochastic methods are based on 

statistical properties of the data. Deterministic interpolation methods create surfaces from 

measured points based on either similarity or a degree of smoothing (Li & Heap, 2008). As such, 

deterministic methods are considered the simplest and easiest to apply. Here, three deterministic 

methods were compared for their potential to interpolate an accurate digital elevation model from 

different intensities of thinned training data.  

The selected interpolation methods, as described below, were applied across all training 

datasets to create DEMs with spatial resolutions ranging from 0.5m to 10m, increasing in 0.5m 

increments. In total, 20 DEMs were interpolated. All the interpolation were carried out with the 

default setting in ArcGIS 10.4.1 (ESRI, 2012). The training DEMs were then evaluated against the 

validation dataset to assess the degree of agreement between each DEM and measured elevation.  

2.2.3.1 Inverse Distance Weighted (IDW) 

Inverse distance weighted (IDW) interpolation is an automated technique (Philip & 

Watson, 1982),  requiring very few parameters from the operators (Hessl et al., 2007). It is 

specifically suitable where the dataset range is narrow and other fitting techniques are heavily 
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affected by errors. The process is highly flexible and allows estimation of datasets with a trend or 

anisotropy (Garnero & Godone, 2013).  

IDW estimates cell values through a linearly weighted combination of sample points, 

where the weight assigned to each sample point is the inverse of its distance from the cell being 

estimated (Philip & Watson, 1982). The underlying assumption of IDW is that an unsampled cell’s 

value is a weighted average of known cells’ data in the local neighbourhood (Garnero & Godone, 

2013). The surface being interpolated should be that of a locally dependent variable, and each 

cell’s value is estimated as (Equation 3): 

𝑍𝑗 =

∑
𝑍𝑖

(ℎ𝑖𝑗𝑘+𝛿)
𝛽

𝑛
𝑖=1

∑
1

(ℎ𝑖𝑗𝑘+𝛿)
𝛽

𝑛
𝑖=1

                                                                                                                             (3) 

Where Zj is the unsampled location value, Zi is the known cells value, β is the weight and δ is the 

parameter. The separation distance hijk is measured by a three-dimensional Euclidian distance 

(Equation 4): 

ℎ𝑖𝑗𝑘 = √(𝛥𝑥)2 + (𝛥𝑦)2 + (∆𝑧)2                                                                                                                 (4)  

Where, Δx, Δy and are the distances between the unknown and known point according to the 

reference axes, and Δz refer to the height as the third point of measure. 

2.2.3.2 Topo to Raster (ANUDEM) 

Topo to raster (ANUDEM) interpolation is a morphological approach designed for 

scattered surface-specific point elevation data and streamline data. The input data may include 

point elevations, elevation contours, streamlines, sink data points, cliff lines, boundary polygons, 

lake boundaries and data mask polygons. It attempts to take into account the special nature of the 

terrain surfaces, and the surface specific points that can be used for the sample terrain (Hutchinson, 
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1989). Topo to raster model is considered by many studies to produce hydrologically correct 

DEMs (eg., Curebal et al., 2016; Salari et al., 2014) 

2.2.3.3 Natural Neighbours (NaN) 

The natural neighbours (NaN) interpolation method was introduced by Sibson (1981). The 

model works by finding the nearest subset of samples for a given cell without a measured value, 

and then applies weights to the samples based on the proportional area they occupy (Sibson, 1981). 

In other words, it combines features from both Nearest neighbours (NN) and Triangular irregular 

network (TIN) interpolation methods.  It starts with a triangulation of the data by Delaunay’s 

method and then finds adjacent samples by Thiessen polygons. The value of an unknown cell is 

estimated by inserting and determining the point within a polygon. For each neighbour, the area 

of the portion of its original polygon that becomes incorporated in the tile of the new point is 

calculated (Webster & Oliver, 2001). This method is well known for its ability to interpolate 

scattered and unevenly distributed data (Ledoux & Gold, 2005). 

2.2.4 Analysis 

For evaluation purposes, a set of statistical calculations was carried out (Table 2.2), 

following Willmott (1981), Vicente-Serrano et al. (2003), and Li and Heap (2014) in R statistical 

environment by using base packages (R Core Team, 2017). These include the coefficient of 

determination (r2) from the ordinary least square (OLS) model, the bias of the model as indicated 

by the intercept–slope pair, the mean bias error (MBE), the mean absolute error (MAE) and the 

root mean square error (RMSE). MAE and RMSE are the best overall measures for evaluating 

agreement between observed and predicted data (Li & Heap, 2014; Vicente-Serrano et al., 2003; 

Willmott, 1982). Both are similar metrics, except the RMSE is more sensitive to extreme outliers, 

whereas MAE is less sensitive. To overcome that,  we include model efficiency (EF), which is 
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based on the relationship between observed and predicted mean deviations (Greenwood et al., 

1985). EF values closer to 1 specify model reliability.  

In addition to statistical metrics, a subjective evaluation was also undertaken to evaluate 

the different interpolations. As Daly et al. (2002) highlighted, empirical knowledge can help to 

determine which method best reflects reality, as long as those methods produce reasonable 

statistical values. So, following the statistical evaluation, DEMs were visually assessed for their 

agreement with the original landscape. 

Table 2.2 Statistical metrics to assess interpolation quality. 

Statistical features Definitions 

N=Number of observation 

𝑂=Observed value 

�̅�=mean of observed value 

𝑃=Predicted value 

𝑃′𝑖 = 𝑃𝑖 − �̅�  

𝑂′
𝑖 = 𝑂𝑖 − �̅�  

Ordinary least square regression Slope 

Intercept 

r2=coefficient of determination 

Mean bias error (MBE) 
𝑀𝐵𝐸 =

∑ (𝑃𝑖−
𝑁
𝑖=1 𝑂𝑖)

𝑁
  

Root mean square error (RMSE) 
𝑅𝑀𝑆𝐸 = √∑ (𝑃𝑖−𝑂𝑖)

2𝑁
𝑖=1

𝑁
  

Mean absolute error (MAE) 
𝑀𝐴𝐸 =

∑ |𝑃𝑖−𝑂𝑖|
𝑁
𝑖=1

𝑁
  

Model efficiency (EF) 
𝐸𝐹 = 1 −

∑ (𝑃𝑖−𝑂𝑖)
2𝑁

𝑖=1

∑ (�̅�−𝑂𝑖)
2𝑁

𝑖=1
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2.3 Results 

2.3.1 DEM resolution analysis 

All DEM resolutions yielded very high r2 values, ranging from 0.9946 – 0.9995 (Table 

2.3). The 0.5m resolution produced the DEM surface with the highest r2 value (0.9995), and r2 

values decreased with a reduction in resolution, reaching 0.9946 at 10m resolution. This result was 

reinforced by the RMSE and MAE being lowest for the 0.5m resolution DEM (Table 2.3 and 

Figure 2.4), and increasing steadily from 0.429m to 1.38m and 0.274m to 1.088m for RMSE and 

MAE, respectively at 10m resolution.  The MBE, which indicates the bias of the prediction, 

showed that at or below resolutions of 5m the DEMs underestimated elevation slightly, whereas, 

at coarser resolutions (specifically at 5.5m, 8m, 8.5m, 9m, and 10m), the DEMs generally 

overestimated elevation.  Moreover, the EF (0.999>0.994) for 0.5 m resolution found more close 

to 1 compared to lower resolutions which indicate in line with other findings irrespective of any 

of the three selected methods.  
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Table 2.3 Results of statistical analysis for different DEM resolutions. 

Resolution r2 Slope Intercept RMSE (m) MAE (m) MBE (m) EF 

0.5 0.9995 1.0042 -0.2155 0.428 0.274 0.029 0.999 

1 0.9994 1.0051 -0.2604 0.450 0.308 0.036 0.999 

1.5 0.9994 1.0042 -0.2114 0.455 0.325 0.024 0.999 

2 0.9993 1.0039 -0.2213 0.488 0.363 0.049 0.999 

2.5 0.9992 1.0053 -0.2654 0.532 0.409 0.029 0.998 

3 0.9991 1.0049 -0.2438 0.571 0.447 0.024 0.998 

3.5 0.9989 1.0027 -0.1715 0.616 0.484 0.051 0.998 

4 0.9989 1.0048 -0.2549 0.615 0.485 0.040 0.998 

4.5 0.9987 1.0077 -0.3825 0.697 0.548 0.044 0.998 

5 0.9984 1.0064 -0.3156 0.758 0.600 0.033 0.998 

5.5 0.9982 1.0077 -0.3316 0.804 0.648 -0.009 0.997 

6 0.998 1.0020 -0.1096 0.830 0.656 0.021 0.997 

6.5 0.9976 1.0056 -0.2718 0.91 0.744 0.024 0.997 

7 0.9974 1.0057 -0.3005 0.968 0.789 0.050 0.996 

7.5 0.9966 1.0094 -0.4256 1.103 0.889 0.011 0.996 

8 0.9965 1.0049 -0.1730 1.108 0.877 -0.044 0.995 

8.5 0.9957 1.0032 -0.1151 1.228 0.991 -0.026 0.995 

9 0.9953 1.0034 -0.0916 1.276 1.030 -0.060 0.994 

9.5 0.9945 1.0030 -0.1725 1.384 1.107 0.040 0.994 

10 0.9946 1.0062 -0.1957 1.380 1.088 -0.077 0.994 
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Figure 2.4 Effect of resolution at each observation point by A) RMSE (root mean square error) 

and B) MAE (mean absolute error). 

2.3.2 Interpolation methods and data density 

GPS points were thinned by 25%, 50%, and 75% and interpolated into three DEMs with 

0.5 m resolution, using each of the three different interpolation methods. Thinning had little 

effect on r2 relative to the DEM produced from the complete set of data points (0% thinned) 

(Table 2.4). Even with 75% thinning, the r2 values only decreased to 0.999, 0.9952 and 0.9984 

for Natural neighbour (NaN), Inverse distance weighting (IDW) and Topo to raster (ANUDEM), 

respectively. NaN had the lowest levels of bias at 25% (MBE = 0.004m) and 50% (MBE = -

0.015m), while at 75% thinning, IDW exhibited the least bias (MBE = 0.029m).  
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Table 2.4 Comparison of the three methods at 0.5m resolution with different data density. 

Method Thinning (%) r2 Slope Intercept MBE 

Natural 

Neighbour 

(NaN) 

0 0.9995 1.004 -0.216 0.004 

25 0.9998 1.001 -0.090 0.004 

50 0.9997 1.003 -0.140 -0.015 

75 0.999 1.009 -0.370 -0.059 

Inverse 

Distance 

Weighting 

(IDW) 

0 0.9989 1.004 -0.269 0.059 

25 0.9989 1.004 -0.269 0.059 

50 0.9982 1.014 -0.730 0.116 

75 0.9952 1.027 -1.238 0.029 

Topo to 

Raster 

(ANUDEM) 

0 0.9998 1.005 -0.284 0.024 

25 0.9998 1.005 -0.282 0.022 

50 0.9996 1.010 -0.489 0.028 

75 0.9984 1.024 -1.046 -0.044 

Given the high r2 values, it is unsurprising that generally the observed and predicted were 

in agreement (Figure 2.5). The observed and predicted values of the data points were slightly more 

scattered in the DEM interpolated using IDW. Figure 2.5 also shows that the spread of the residuals 

increased when elevation data were thinned by 75% prior to DEM interpolation.  
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Figure 2.5 Residuals plotted against predicted elevation (m) for different models and levels of data 

thinning. Red line shows the model prediction trend. 

RMSE and MAE data provide a better opportunity to discriminate between different 

interpolation algorithms with thinned data. IDW yielded the highest RMSE and MAE irrespective 

of the level of data thinning applied (Figure 2.6). RMSE ranged between 0.631m and 1.388m and 

MAE ranged between 0.471m and 0.984m for IDW. In contrast, NaN and ANUDEM 
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interpolations resulted in lower RMSE and MAE values at all thinning intensities. RMSE ranged 

between 0.239m and 0.614m and 0.305m and 0.877m for NaN and ANUDEM, respectively, while 

MAE ranged between 0.152m and 0.301m and 0.197m and 0.526m.  Irrespective of interpolation 

algorithm, RMSE and MAE remained reasonably consistent until 75% thinning, when there was a 

large increase in both metrics. At 75% thinning the density of points used to interpolate the DEM 

was only 0.129 points m-2, compared with 0.519 points m-2 in the unthinned data.   

 
Figure 2.6 Comparison of three interpolation method in regards to different data density A) Root 

mean square error (RMSE) and B) Mean absolute error (MAE). 

In addition to quantitative analyses, a visual inspection was carried out on the DEMs 

produced by the three interpolation methods. It was found that the IDW produced a less reliable 

surface with a lot of abnormalities (Figure 2.7(C0-3)). In contrast to that, the NaN and ANUDEM 
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produced more consistent and representative DEM surfaces. Moreover, among the two, ANUDEM 

interpolated the DEM surface, both with consistency and reliability in relation to the original 

surface (Figure 2.7(B0-3)). It resembled reality more closely, where NaN produced a surface that 

was overly smooth and unrealistic (Figure 2.7(A0-3)). With greater elevation data density, the 

surface better resembled the original natural surface, showing features like mounds or gullies. 

Whereas, with the reduction of elevation data points through thinning, the surface was rendered 

relatively smoothly and obscured topographic features that were visible with higher data densities. 

For example, a gully on the site was virtually invisible with the lowest data density (i.e. 75% 

thinning) (Figure 2.7(A3, B3, C3)). 
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Figure 2.7 Hillshade surfaces produced from DEMs interpolated by: A) Nearest neighbour, B) ANUDEM and C) IDW. Numbers 0 to 3 

represent 0%, 25%, 50%, and 75% elevation data thinning prior to DEM interpolation. 
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2.4 Discussion 

2.4.1 An alternate data source 

The GNSS surveyed elevation point data can be used to produce high-resolution DEM. 

Though aerial laser scanning data are commonly used for this purpose, its shortcomings may 

preclude its use in some instances. In contrast, collecting elevation data via GNSS surveys is 

inexpensive, easy to undertake, often with little or no specialist skill. The data density of ALS 

yields high accuracy and resolution (Anderson et al., 2006; Liu et al., 2007). However, depending 

on the desired DEM resolution, high point density associated with ALS data may not be needed 

(Anderson et al., 2006), suggesting that the relatively low elevation data density achievable with a 

GNSS approach may be appropriate under some conditions; however, this will depend on the 

required resolution, and the interpolation used to generate the DEM.  

2.4.2 Optimal resolution 

Spatial resolution is important for DEMs as many other surfaces can be derived from it. 

Errors in a DEM are perpetuated through to derived aspect, slope, hill-shade, and surface curvature 

surfaces, amongst many others. Moreover, DEMs are critical in their role for normalising digital 

surface models. In this study, errors in the DEM were minimised by increasing spatial resolution 

from 10m to 0.5m. This finding is in line with previous research showing that DEMs interpolated 

from LiDAR point clouds had accuracy proportional to spatial resolution (Kienzle, 2004; Ouma, 

2016; Thomas et al., 2017). Although those results were based on LiDAR data, which typically 

has much greater point density than the point density achieved with the GNSS approach in this 

study, the underlying theory remains the same.  
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2.4.3 Influencers of DEM quality 

The question of resolution and DEM accuracy is also dependent on the characteristics of 

the surface being modelled (Arun, 2013; Kienzle, 2004; Zimmerman et al., 1999). Flat surfaces 

can be interpolated accurately even with relatively few elevation points due to topographic 

homogeneity. In contrast, surfaces that are topographically heterogeneous are likely to require 

greater point density and higher resolution to capture small undulations or other features in the 

landscape.  

Data density and distribution have also been shown to influence interpolation quality 

(Erdogan, 2009; Guo et al., 2010). The present study clearly showed that elevation point density 

influenced DEM quality. At low densities, a small number of data points are used for interpolation, 

creating a generalised surface; this is because most the deterministic approaches are mainly based 

on some simple mathematical functions (Erdogan, 2009). Li and Heap (2011) reported that data 

distribution had a greater effect, relative to data density, on the quality of the DEM produced.  

On the contrary, it is not suitable to produce high-resolution DEM from sparse data as the 

surface will be shaped by the interpolator and interpolation artefacts will proliferate (Albani* et 

al., 2004; Florinsky, 2002; Liu et al., 2007) and the resolution constraints by the data density 

(Florinsky, 1998). For this study the all the data were collected in a way that was assumed to give 

an evenly distributed dataset. Hence, the effect of distribution was not tested explicitly. Moreover, 

the selection of validation points, thinning and study site characteristics would have resulted in 

some spatial variation in point distribution. Firstly, the validation points had a high positive spatial 

correlation with the training dataset as they were not independently collected and lying in line with 

each other. Secondly, even though the thinning routine was performed in a randomised manner, 

minor clustering may have influenced the results. Thirdly, the study site was relatively small. 
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Hence, it is expected that the results are site specific and could vary with changes in site or surface 

structure. For example, if the site was more rugged than this one, a higher error could be expected. 

2.4.4 Deterministic interpolation method 

The interpolation method is important for the accuracy of the interpolated digital elevation 

model because interpolation can vary with the nature of the surface terrain and spatial structure 

(Arun, 2013; Tan & Xu, 2014; Zimmerman et al., 1999). In the present study, though ANUDEM 

and NaN had similar quantitative metrics, ANUDEM produced a more realistic and consistent 

DEM, relative the NaN interpolation. NaN is mostly used in cases where there is a need to have a 

geo-morphologically smooth surface (Bobach & Umlauf, 2008), whereas ANUDEM tends to be 

useful where well-defined drainage and major topographic features exist (Hutchinson., 1989). It is 

important to note that there is no single optimal interpolation method, but rather many methods 

optimised by matching with particular end uses of the DEM (Li et al., 2000). This is further 

supported by Arun (2013) and Kienzle (2004), who stated that the interpolation method is mostly 

chosen based on the purpose and focus of the research. The implication of this research and 

previous studies is the importance of testing various interpolation algorithms for individual sites 

to guide through the process to get an optimised one.  

2.5 Summary and conclusions 

This study evaluated the quality of digital elevation models interpolated from elevation 

data acquired from a differentially corrected GNSS (RTK-GPS) receiver.  Three interpolation 

methods (NaN, IDW, ANUDEM) were compared, as was the influence of different spatial 

resolutions and data density. With dense and regularly distributed data, a high-resolution DEM 

(0.5m) was interpolated with RMSE as low as 0.428m and MSE as low as 0.274m. Thinning the 

elevation point data by 25% or even 50% had minimal effect on the DEM quality. Despite similar 
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quality from a quantitative perspective, ANUDEM performed better than NaN and IDW 

interpolated DEMs from a qualitative perspective. In this study, the use of quantitative and 

qualitative approaches for judging DEM quality resulted in a better decision.     

LiDAR data acquisition has become the standard approach for collecting point data to 

interpolate high-resolution ground and above-ground surfaces (e.g. canopy height model). LiDAR 

acquisition is generally only cost effective over large contiguous areas of land. The present results 

are promising for applications where it is unfeasible to acquire LiDAR data. The RMSE and MAE 

values are higher than those from LiDAR studies (Hodgson & Bresnahan, 2004), but are within an 

order of magnitude, and therefore comparable. In conclusion, the interpolation of data collected 

via GNSS surveys can yield accurate digital elevation models. This method should be considered 

alongside LiDAR data interpolation as a viable means of generating topographic surfaces, 

especially in cases where study areas are small and easily accessible. In these areas, the GNSS 

approach can provide a low cost, efficient, and effective solution to DEM creation.  
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influences on the growth of juvenile Eucalyptus 

globoidea and Eucalyptus bosistoana in New Zealand 
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3. Modelling the effect of environmental micro-site influences on the growth of juvenile 

Eucalyptus globoidea and Eucalyptus bosistoana in New Zealand. 

3.1 Introduction 

The term “site”, used as a primary ecological unit, plays an important role as one of the principal 

factors in the survival and growth of trees at different scales (Radford et al., 2002). It refers to a 

geographical location with a homogenous physical and biological environment (Bailey et al., 1978; 

Grey, 1980). In a forestry context, plantation forest sites, typically called stands, are specific 

bounded areas that receive similar silvicultural treatments (Louw, 1999; Skovsgaard & Vanclay, 

2008). However, although plantation forests are homogenised through silviculture, their growth 

shows considerable spatial and temporal variability (Skovsgaard & Vanclay, 2013).  

The two main components of a site that control its productivity are its soil and associated 

climate. They developed over time through plant-soil interactions involving soil moisture, 

nutrients and gas-exchange (Bohlen et al., 2001; Koch et al., 2004; Mooney et al., 1987). Koch et 

al. (2004) reported a direct relationship between soil moisture and plant height growth, while 

Parton et al. (1987) documented meteorological effects on soil properties. Skovsgaard and Vanclay 

(2008) defined site productivity as the potential of a particular stand to produce aboveground 

biomass. Variation in site productivity has long been a subject of interest to researchers, forest 

managers and owners. Normally, it depends on soil, climate and management regimes.  In many 

cases, it is assumed to change gradually and predictably. Previously, large-scale site variation has 

been extensively researched (e.g., Berrill & O'Hara, 2015; Bravo-Oviedo et al., 2008; Landsberg, 

2003). However, forests can be organised on different scales (Wiens, 1989) including small scales 

that directly affect forest productivity (Chen et al., 1999). Small scale or micro-site variation has 

been recently explored in both mature natural forests (Coates, 2002; Kuuluvainen, 2002; Martín-
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Alcón et al., 2015; Narukawa & Yamamoto, 2001) and plantation forests (Mummery & Battaglia, 

2002; Weiskittel et al., 2008). The topic of micro-site variation in plantation forests merits further 

attention. 

Forest growth models are mostly developed for established trees (Spiecker et al., 1996) 

that have undergone canopy closure, when competition among trees is active (Zhang et al., 1996). 

Stand and individual tree-level growth models, and simulators have been well researched 

(Burkhart & Tomé, 2012; Clutter, 1963; Daniels & Burkhart, 1988; Ek, 1974; Garcia, 1984; 

Goulding, 1979; Weiskittel et al., 2011). Juvenile growth models for the period prior to canopy 

closure and competition are rare (Avila, 1993). However, such juvenile growth models could 

explain the unique features of young stands, as listed by Mason and Whyte (1997). Also, juvenile 

growth models can provide information about the whole stand development process, and therefore 

assist in scheduling silvicultural treatments (Mason & Whyte, 1997; Zhang et al., 1996). Moreover, 

juvenile growth is often more complex than mature stand growth, as both inter- and intra-specific 

competition occurs among the trees. 

 Information produced by traditional time-based mensurational growth models from 

inventory data can guide the decision making process in forest management. Such models are 

robust and simple, but sacrifice the explanatory ability of ecophysiological process of tree growth. 

For this reason, the addition of tree growth factors (e.g., edaphic and biotic) into models can 

improve precision and accuracy, and enhance understanding of the modelled system (Casnati, 

2016). Models explanatory ability can be improved by several approaches. Among them, 

integrating growth factors into the mathematical environment is the most common procedure for 

both juvenile (Mason, 2001; Mason & Whyte, 1997) and mature stand models (Weiskittel et al., 

2011; Woollons et al., 1997). Another approach used is to replace the stand age with structural 
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explanatory indices (Snowdon et al., 1999). These hybrid approaches give a physiological 

understanding of traditional mensurational models, yet do not require a high number of parameters 

like ecophysiological models (Mäkelä et al., 2000). So, the usefulness of hybrid models has been 

considered as an improvement over mensurational and ecophysiological models (Mäkelä et al., 

2000; Watt et al., 2004). 

Like the agricultural sector, production forestry is moving towards a precision approach 

(Dyck, 2003), which requires measurement of individual tree growth and response to fine-scale 

environmental conditions and silvicultural treatments. Precision agriculture and forestry rely on 

multi-scalar data collection techniques, e.g. remote sensing (Adão et al., 2017; Akay et al., 2009) 

and geostatistical techniques, e.g. surface interpolation (Salekin et al., 2018). The challenge for 

precision forestry is to adapt traditional growth modelling to take advantage of relatively new 

abilities to describe environmental conditions at a fine spatial scale. 

This study explores a comprehensive set of topographic, edaphic and climatic 

explanatory variable effects at the micro-site level on the growth and survival of small plots of 

trees in juvenile plantations. Hence, the main research objectives were, 

i) To identify micro-site level topographic, edaphic and climatic variables that influence 

the height growth of juvenile Eucalyptus globoidea and Eucalyptus bosistoana, and to 

include these in a height growth model.  

ii) To identify micro-site level topographic, edaphic and climatic variables that influence 

the survival of juvenile E. globoidea and E. bosistoana, and to include these in a 

survival model. 
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3.2 Materials and methods 

3.2.1 Experimental sites 

The study was conducted in a subhumid climate zone of the South Island of New 

Zealand. The three experimental sites for this study were situated close to Blenheim, New Zealand 

(Figure 3.1). Site A, B, and C have areas 4.7, 3.7 and 2.2 hectares, respectively and are planted 

with E. globoidea (Site A) and E. bosistoana (Sites B and C) (Table 3.1).  

The region in which the trial sites are located is sheltered by high country to the west, 

south and in some areas to the east, and it is one of the sunniest regions of New Zealand (NIWA, 

2015). Warm, dry and settled weather predominates during summer, while winter days often begin 

with a frost, but are usually mild overall. Typical summer daytime maximum air temperatures 

range from 20°C to 26°C, but occasionally rise above 30°C. Typical winter daytime maximum air 

temperatures range from 10°C to 15°C (NIWA, 2015). Northeast winds prevail in Nelson, while 

south-westerlies prevail in Blenheim. High temperatures are frequent in Blenheim and may be 

accompanied by dry Foehn winds from the northwest (NIWA, 2015).   

The soils at these sites are formed from loess and classified as Pallic Argillic soils (New 

Zealand Department of Scientific and Industrial Research, 1968) commonly categorised as 

Flaxbourne soils. Pallic Argillic soils have clay accumulations found as thin subsoil bands and 

occur predominantly in the seasonally dry eastern parts of the North and South Islands and in the 

Manawatu region of New Zealand. Parent materials in the region are commonly loess derived from 

schist or greywacke, which cover approximately 12% of New Zealand. According to Land 

Resource Information System (2015), the trial sites are considered to have very low productivity. 

Detail soil classification information of three study sites presented in Table 3.5.  
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Figure 3.1 Study site locations. 

3.2.2 Data collection and preparation 

Data related to stands, climate and soils were collected for both species from all three 

experimental sites. The data collection and preparation procedures are described below. 

3.2.2.1 Tree data 

Sites A, B and C were established respectively in 2011, 2009 and 2012. Site A and C 

have 282, and 108 plots, respectively with each plot measuring 14.4m x 10.8m, and site B have 
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150 plots measuring 12m x 10.8m (Table 3.1). Trees were planted in regular rows and columns 

within plots with spacing equal to 2.4m x 1.8m in all sites.   

There were approximately 25,000 trees at the three sites. The height (h), diameter at 

breast height at 1.4m (DBH), and tree status (dead or alive) were measured for all trees. All tree 

measurements were undertaken during November-January 2015-2016 and again in June-August 

2017 (Table 3.1). Prior to these measurements, the New Zealand Dryland Forest Initiative 

(NZDFI) conducted a tree inventory by measuring the height and tree status at age 1.2 years. 

Individual tree height and survival data were averaged at each plot. Due to the small height 

and stem diameter of the trees, there were not enough DBH measurements to use or calculate basal 

area. Even, the root collar diameter measurement was not available. The survival proportion (S) 

was calculated for each plot from the average number of surviving trees.  

Height data from all three sites were used to create the juvenile height model. For survival 

data, only the A and C sites survival proportion (S) were used to create the juvenile survival model, 

as there was a thinning trial in the B site prior to completion of field measurements for this study. 
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Table 3.1 Summary of the plantation inventory data. 

Site A B C 

Variable Height Survival Height Survival Height Survival 

Fit. Vald. Fit. Vald. Fit. Vald. Fit. Vald. Fit. Vald. Fit. Vald. 

Est. (Year) 2011 2009 2012 

Area (ha) 4.7 3.7 2.2 

Trees 12,000 8,000 5,000 

Age (year) 6 8 5 

Plots (n) 217 65 217 65 112 38 - - 81 27 81 27 

Ht(m)    

Mean 1.54 1.48 - - 4.88 4.99 - - 2.11 2.04 - - 

Min 0.33 0.46 - - 0.98 1.07 - - 1.29 1.26 - - 

Max 4.58 3.67 - - 13.47 13.66 - - 3.74 2.93 - - 

SD 0.84 0.73 - - 2.60 2.69 - - 0.52 0.44 - - 

S    

Mean - - 0.75 0.74 - - - - - - 0.99 0.99 

Min - - 0.19 0.33 - - - - - - 0.89 0.92 

Max - - 1.00 1.00 - - - - - - 1.00 1.00 

SD - - 0.18 0.19 - - - - - - 0.02 0.02 
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3.2.2.2 Topographic data 

The digital elevation model (DEM) for all the sites was produced by using a real-time 

kinetic geo-positioning system (RTK-GPS). The unit was carried on transect lines across the 

sites, with coordinates and elevation collected at five-metre intervals along the transects. The 

final digital elevation model (DEM) was produced by the process described in “Chapter 2”.  

Next, primary and secondary surface attributes were derived from the DEM. The 

primary attributes include elevation, aspect, and slope (Travis et al., 1975). From these, the 

following secondary indices were calculated: total, profile and plan curvature (Heerdegen & 

Beran, 1982; Zevenbergen & Thorne, 1987); topographic ruggedness (TRI) (Riley et al., 1999); 

topographic position (TPI) (Weiss, 2001); topographic wetness (WTI) (Beven & Kirkby, 1979; 

Moore et al., 1991); wind exposure (WEI) (Gerlitz et al., 2015); and morphometric protection 

(MPI) index (Yokoyama et al., 2005) (details of these indices are described in Table 3.2).  Table 

3.3 represents the summary statistics of these indices.  All surfaces were interpolated or derived 

using ArcMap v.10.4 (ESRI, 2012) and the System For Automated Geoscientific Analysis 

(SAGA) (Conrad et al., 2015).  
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Table 3.2 Description of the topographic attributes. 1 

Type  Equation Properties Reference 

P
ri

m
a
ry

 

a
tt

ri
b
u

te
s Elevation Value at each point of the DEM Above sea level (a.s.l) in meters.  (Speight, 1980; Travis et al., 1975) 

Slope 
arctan[(G2 + H2)

1
2] 

Steepness in degrees. (Moore et al., 1991; Speight, 1980; 

Travis et al., 1975) 

S
ec

o
n

d
a
ry

 a
tt

ri
b
u

te
s 

Curvature CV = 2E − 2D Higher value = convex surface 

Lower value = concave surface 

Can take negative value. 

(Heerdegen & Beran, 1982; 

Zaslavsky & Sinai, 1981; 

Zevenbergen & Thorne, 1987) 

Profile 

curvature CVPRO = −2
DH2 + EH2 + FGH

G2 + H2
 

Higher value = vertical surface convexity  

Lower value = vertical surface concavity 

Can take negative value.   

(Heerdegen & Beran, 1982; 

Zaslavsky & Sinai, 1981; 

Zevenbergen & Thorne, 1987) 

Plan 

curvature CVPLA = 2
DH2 + EH2 − FGH

G2 + H2
 

Higher value = horizontal surface convexity  

Lower value = horizontal surface concavity 

Can take negative value.  

(Heerdegen & Beran, 1982; 

Zaslavsky & Sinai, 1981; 

Zevenbergen & Thorne, 1987) 

Ruggedness 

index 
TRI = Y [∑(Xij − X00)

2
]
1/2

 
Terrain heterogeneity. Higher values represent 

the more heterogeneous surface. 

(Riley et al., 1999) 

Position index TPI<scalefactor>=int(DEM-

focalmean(DEM,annulus,irad,orad)+0.5) 

Higher value = overall convexity  

Lower value = overall concavity 

(Weiss, 2001) 
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Can take negative value. 

Wetness index 𝑇𝑊𝐼 = 𝑊 = 𝑞𝑎/𝑏𝑇 sin 𝜃 Values can be >0. Greater values correspond to 

increasing surface wetness. 

(Beven & Kirkby, 1979; 

Montgomery & Dietrich, 1994) 

Wind 

exposure 

index 
𝑊𝐸𝐼 =

∑
1

𝑑𝑊𝐻𝑖

𝑛
𝑖=1 . tan−1 (

𝑑𝑊𝑍𝑖

𝑑𝑊𝐻𝑖
)

∑
1

𝑑𝐿𝐻𝑖
𝑛
𝑖−1

+
∑

1
𝑑𝐿𝐻𝑖

𝑛
𝑖=1 . tan−1 (

𝑑𝐿𝑍𝑖
𝑑𝐿𝐻𝑖

)

∑
1

𝑑𝐿𝐻𝑖
𝑛
𝑖=1

 

Higher value = High wind exposed 

Lower value = Low wind exposed 

(Böhner & Antonić, 2009; Gerlitz 

et al., 2015) 

Morphometric 

protection 

index (MPI) 

DϕL = 90 − DβL 

DψL = 90 + DδL 

𝜙𝐿 = (0𝜙𝐿 + 45𝜙𝐿 +⋯+ 315𝜙𝐿)/8 

𝜓𝐿 = (0𝜓𝐿 + 45𝜓𝐿 +⋯+ 315𝜓𝐿)/8 

Higher value = Less protected by surroundings  

Lower value = More protected from 

surroundings. 

(Yokoyama et al., 2005) 

Distance from 

the top ridge 

(DIST) 

Linear distance to every plot centre from 

the top ridgeline. 

Value increases with distance from the nearest 

ridgeline 

 

1 
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Table 3.3 Summary of the topographic attributes for study sites. 

Attributes A B C 

Min Max Mean SD Min Max Mean SD Min Max Mean SD 

Aspect (°) 5 356 127 137 56 346 125 84 209 330 266 26 

Slope(°) 14 32 24 4 12 30 21 3 9 29 22 5 

Elevation (m) 13 79 45 17 134 168 149 10 233 278 257 12 

Curvature -2 4 0.1 1 -2 5 0.2 1 -3 3 0.3 1 

Profile 

curvature 
-3 2 -0.01 0.7 -2 1 -0.1 0.6 -2 3 0.00 1 

Plan 

curvature 
-2 2 0.10 1 -1 3 0.1 1 -2 2 0.30 1 

TRI 0.5 1 1 0.2 0.1 0.2 0.1 0.0 0.1 0.2 0.1 0.0 

TPI -2 4 0.1 1 -14 13 -1 7 -14 10 -1 7 

WTI 0 4 1 1 -0.1 3 1 1 0 7 3 4 

WEI 0.5 1 1 0.1 0.8 1 1 0.1 0.5 1 1 0.1 

MPI 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.0 0.1 0.2 0.1 0.0 

 

3.2.2.3 Soil data 

Each of the three experimental sites was stratified by a combination of aspect and slope. 

Soil pits (n = 31) were excavated to one-metre depth within the different strata to collect soil 

samples. The physical properties of the soil samples and pits were described according to 

Gradwell (1972). In addition, soil profile depth, rooting depth, and soil penetrability were 

measured for each pit (Table 3.4). A set of randomly chosen subsamples (n = 30) from these 

pits were tested for their moisture retention characteristics. There were no visual signs for 

limited nutrition. 
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Table 3.4 Summary statistics of soil pits with rooting depth. 

Variables A B C 

Min Max Mean SD Min Max Mean SD Min Max Mean SD 

Total pits 12 11 8 

Rooting  

depth (cm) 
48.00 100.0* 74.92 17.8 50.0 100.0 81.36 18.56 90 100 93.75 3.15 

Elevation (m) 13.19 60.89 33.43 11.9 128 159.7 141.56 9.93 233 269.5 251.37 12.83 

Slope (°) 12.50 26.31 22.01 4.31 11.2 24.61 19.05 3.69 10.8 25.57 18.20 4.61 

Aspect (°) 4.91 357.1 79.01 129 46.1 345.3 230.91 139.01 266 315.4 292.04 16.49 

*1 meter/100cm was the maximum depth of soil pits. 

Table 3.5 Soil description of three sites according to Hewitt (2010). 

Site Soil series Dominant soil type Soil class Class name Comments 

A Flaxbourne Hill soils PJT Typic argillic pallic Argillic pallic soils have a 

clay accumulation in the 

sub-soils 

B Flaxbourne Hill soils PJT Typic argillic pallic 

C Wither Hills soils PXJN Argillic-sodic 

fragic pallic 

Fragic pallic soils are 

predominantly silty and 

severely restrict root 

movement. 

 

3.2.2.4 Climatic data 

Each site had an independent meteorological station established in close proximity. 

Each station was equipped with radiation, temperature and moisture loggers, and wind and rain 

sensors. There were 20 additional air temperature loggers installed in the A and B sites at one 

meter above ground to measure the air temperature variation within the sites. All the loggers, 

including the meteorological stations, collected data at 30-minute intervals from 2015 to 2017. 

  The independent temperature logger data were summarised by average daily and 

maximum monthly temperatures for the whole period (Table 3.6 and Figure 3.2 (A, B)). The 

temperature differences between these loggers and the temperature logger within the 

meteorological stations were calculated (Figure 3.2(C, D). 
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Table 3.6 Summary of the average daily maximum monthly temperature. 

Sites Total logger 

number 

Summary statistics 

Min Max Mean SD 

A 10 13.23 34.34 22.45 4.50 

B 10 12.66 45.59 21.25 5.42 

 

 

Figure 3.2 Daily maximum temperature by month at A) A, and B) B sites (red line showed the 

general monthly temperature trend); C) and D) represents the temperature difference at A and 

B sites from the independent weather station temperature (blue line showed the general trend). 
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3.2.3 Modelling approach 

3.2.3.1 Soil rooting depth model 

Soil moisture availability is important for tree growth, but it is crucial at the seedling 

stage, and it often relates to seedling growth and survival. Padilla and Pugnaire (2007) found a 

positive relationship with soil moisture availability in dryland areas with rooting depth. 

Seedlings experiencing deeper rooting depth can have better growth and survival rates as they 

have the opportunity to access more moisture and nutrients available in the soil. Because of 

this, gaining knowledge about soil rooting depth is desirable for growth and survival modelling. 

Unfortunately, it is hard to measure soil rooting depth over large areas, due to soil 

heterogeneity.  However, it may be possible to estimate soil rooting depth for large areas based 

on topographic attributes (Burke et al., 1999; Chen et al., 1997; Lexer & Hönninger, 1998). To 

explore the soil rooting depth relationship with different primary topographic attributes, i.e., 

elevation, aspect and slope, simple Pearson correlation (Benesty et al., 2009) and ordinary least 

square (OLS) regression (Hutcheson, 1999) were applied. 

3.2.3.2 Temperature model 

Pearson correlation test was performed to check the degree of association between the 

temperature difference with primary topographic attributes. As the temperature differences 

were captured for different strata through a repeated time series measurement, a linear mixed-

effect regression model (Verbeke & Lesaffre, 1996) was applied to explain these differences 

by using random and fixed effects. The general structure of a linear mixed-effect model is 

represented by Equation 5. In this case, the primary topographic attributes were the fixed 

effects, whereas the loggers, site and different months were placed random effects. Once, the 

relationship was established, it was used to simulate the temperature at each plot with respect 

to the base weather station. 
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Yij = b0 + b1Xij + Vi0 + Vi1Xij + εij                                                                                         (5) 

where, 𝑌𝑖𝑗 = the response variables, 𝑏0 = fixed intercept, 𝑏1 = fixed slope, 𝑋𝑖𝑗 = predictor 

variable of j-th measurement of the i-th subject, 𝑉𝑖0 = random intercept of the i-th subject, 𝑉𝑖1 

= random slope of the i-th subject, 𝜀𝑖𝑗 = error term.    

3.2.3.3 Juvenile height model 

In young plantations prior to canopy closure, one might expect that growth should be 

exponential, with larger trees having greater leaf and root surface areas than smaller trees. 

Mason and Whyte (1997) expressed this growth function as, 

dh

dT
= γh

δ
                                                                                                                                           (6) 

by solving this, 

h = h0 + αTβ                                                                                                                               (7) 

where, 

α = ((1 − δ)γ)
1

1−δ       β =
1

1−δ
                                                                                                       (8) 

So, equation 6 can be written as, 

hT = h0 + αTβ                                                                                                                             (9) 

Here, h0 = mean height immediately after planting, in this case 0.25 m, which is the estimated 

height for Pinus radiata seedlings planted in plantations in New Zealand. Also, ℎ𝑇 = mean 

height at stand age T. 

Equation 9 has been widely used for modelling juvenile crops (Belli & Ek, 1988; Mason 

& Whyte, 1997). Furthermore, Mason and Whyte (1997) showed that the coefficients of 
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Equation 9 can be extended as a linear function (Equation 10 and 11) to independent variables 

and their interactions by inserting them into linear functions. 

α = α0 + α1V1 +⋯+ αnVn                                                                                                      (10) 

β = β0 + β1V1 +⋯+ βnVn                                                                                                       (11) 

3.2.3.4 Survival model    

 It is rare to have specific information about each tree in young plantations. The 

mortality of trees in young plantations is not due to competition among them, but rather water 

stress or other site-specific factors. According to Mason and Whyte (1997) juvenile mortality 

should be considered as a random process over time and, therefore, should follow a Poisson 

probability distribution, where, N represents stems per unit area, T is crop age in years, and K 

is a constant that varies with crop and conditions. 

dN
dT⁄

N
= K                      (12) 

The numerical value of K changes with time and location (Eq. 13) 

dN
dT⁄

N
= αTβK = αTβ                  (13) 

 When solved, the derivative expression results in a form of the well known Weibull 

probability density function (Mason & Whyte 1997). The functional form should be 

anamorphic, as the percentage of deaths would be independent of the stocking.  

 The survival function used by Belli and Ek (1988) was one of exponential decay, which 

converted to mortality by taking the same Weibull probability density functions derivatives 

given by Mason (1992). Other modellers have used similar approaches (Amateis et al., 1997; 

Belli & Ek, 1988; Zhang et al., 1996). In this case, the survival proportion function (Equation 

14) fitted a yield form described in Mason and Whyte (1997) (Equation 14).  

ST = −eαT
β
                                                                                                                                 (14) 
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where, 𝑆𝑇= survival at stand age T, and α and β represent model coefficients. 

It is expected that the coefficients should vary with independent explanatory variables, which 

can be extended linearly by following the same approach as the height model (Equations 10 

and 11).  

3.2.4 Model testing and validation 

Model validation is a procedure in which the model is tested for agreement with an 

independent dataset of those observations used to structure the model and estimate its 

parameters (Shugart, 1984). There are many types of model validation in use, where both 

quantitative and qualitative assessments are taken into consideration (Sargent, 2013). However, 

using only statistical tests for validation has resulted in strong debate (Sale et al., 2002; Wright, 

1972). This is because there are many criteria for assessing the suitability of models (Mayer et 

al., 1994). As each model is unique, there is no single validation process or method, so Kozak 

and Kozak (2003) advised a combination of techniques. In consequence, the goals of model 

validation and testing are important, as they are not designed to prove that a model is accurate 

(Popper, 2014), but rather to see how well the model performs and agrees with the independent 

observations. Also, the model predictions should be sufficiently statistically and biologically 

similar to independent observations that the model choices can be defensible (Yang et al., 

2004). In this circumstance, a mixed approach was applied to evaluate the model, by 

performing a full set of residual analyses. Validation included a visual analysis of graphs of the 

residuals, the calculation of root mean square error (RMSE) (Equation 15), mean absolute error 

(MAE) (Equation 16), bias (Equation 17), coefficient of determination (r2) (Equation 19) and 

corrected Akaike information criterion (AICc) (Equation 18) (Akaike, 1981). 

RMSE = √∑ (Pi−Oi)
2N

i=1

N
                                                                                                            (15) 

MAE =
∑ |Pi−Oi|
N
i=1

N
                                                                                                                      (16) 
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bias =
∑ (Pi−
N
i=1 Oi)

N
                                                                                                                     (17)  

AICc = AIC +
2K2+2K

N−K−1
                                                                                                                 (18) 

r2 =
∑P′i

2

∑ O′i
2                                   (19) 

where N = Number of observation, O = Observed value, O̅ = mean of observed value, P = 

Predicted value, P′i = Pi − O̅, O′i = Oi − O̅.  K denotes the is the number of estimated 

parameters.  

There are many established procedures to perform model validation (Uzoh & Mori, 

2012).  Among them, independent datasets are often not available; as a result, splitting data 

sets is a commonly accepted practice for model testing and validation if the dataset is 

sufficiently large (Kozak & Kozak, 2003). Dobbin and Simon (2011) suggested a data splitting 

ratio of 75:25 (model fitting: validation), which was applied in this study. 

3.2.5 Statistical analysis 

All statistical analyses were performed in the R statistical environment (R Core Team, 

2017). The Pearson correlation was applied to soil rooting depth and temperature difference by 

“cor” function. Also, ordinary least square (OLS) for soil rooting depth was performed with 

the “lm” function. All these were performed through the base package in R. The temperature 

difference within sites was explored with “lme4” package (Bates et al., 2014) by applying the 

“lmer” function through the selected random and fixed effects.  

The nonlinear regression model coefficients were fitted and separated by running the 

“nls” function. Then an assessment for potential multicollinearity was performed for all 

explanatory variables by using the variation inflation factor (VIF) with the “vif.mer” function 

of the car package in R (Fox & Weisberg, 2011). Elevation, slope, and topographic ruggedness 
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index (TRI), total curvature were shown to have high multicollinearity, hence were excluded 

from the model building procedure.  

Following multicollinearity analysis, model coefficients were fitted against the 

explanatory variables by using the “lm” function. Finally, the height and survival models were 

fitted using the “nls” function with only the significant variables. The height and survival 

models were validated against the validation datasets by using “Rsq.ad”, “AICc” function in 

“qpcR” package (Spiess & Ritz, 2014), and “rmse”,”mae”, “bias” functions from the “metrics” 

package (Hamner & Frasco, 2018). Besides this, residuals were visually inspected for their 

normality and variance homogeneity.  

3.3 Results 

3.3.1 Soil rooting depth 

At all the three sites, soil rooting depths showed weak correlation with all primary 

topographic parameters. Moreover, rooting depth did not vary significantly among the three 

sites. Besides, none of the primary topographic attributes had a significant relationship with 

rooting depth. Elevation was slightly and negatively correlated to soil rooting depth at the A 

and C sites, whereas in the B site there was a positive correlation. The correlation coefficients, 

R, were respectively -0.28, -0.33 and 0.26.  Slope had a positive association at the B and C 

sites, and a negative association at the A site (Table 3.7).  
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Table 3.7 Results of rooting depth analysis. 

Sites A B C 
S
ta

t.
 Aspect Slope Elev. Aspect Slope Elev. Aspect Slope Elev. 

R 0.41 -0.23 -0.28 -0.096 0.32 0.26 -0.39 0.049 -0.33 

p 0.19 0.47 0.38 0.79 0.37 0.46 0.34 0.91 0.43 

Sig. NS NS NS NS NS NS NS NS NS 

Note: Correlation coefficient R, p-value indicates the significant level at >0.05 and significant 

level (Sig.) NS stands for not significant. 

3.3.2 Temperature variation at Avery and Lawson sites 

The full temperature difference mixed-effect model indicated that primary topographic 

attributes (aspect, slope and elevation) had a significant effect on air temperature difference 

within sites (p-value=2.306e-09 and AICc=1506.06). Aspect had a negative effect. This 

indicated that the temperature difference increased significantly from South to North. Slope 

also affected the air temperature differences negatively, indicated that the temperature 

differences lowered with a higher slope. On the other hand, elevation had a positive effect 

which means temperature difference increased with increasing elevation (Table 3. 8).  
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Table 3. 8 Coefficients for final full linear mixed models for air temperature difference within 

site. 

Fixed effects Est. SE t Sig 

Intercept -1.870177 1.145 -1.633 NS 

Aspect -0.321877 0.162 -1.984 * 

Slope -0.108914 0.024 -4.400 *** 

Elevation 0.026662 0.006 3.964 *** 

Random effect Var. SD   

Months 0.328 0.573   

Site 0.800 0.894   

Logger 0.720 0.8488   

Residual 1.500 1.225   

Note: Est. = Estimate; SE = Standard error; Sig. = Significance level, Var. = Variance, SD = 

Standard deviation (*** = p<0.001, ** = p<0.05; NS = p≥0.05) 

3.3.3 Juvenile height model  

All of the juvenile height models for both species (Equation 20, 21 and 22) had low and 

stable error statistics (Table 3.9). For E. globoidea, bias was found at low and high predicted 

height values (Figure 3.3), where the model overpredicted the height. With the exception of 

bias, all calculated statistics were lower for the fitting dataset than for the validation dataset 

(see Table 3.9).  

hEGTA = hEG0 + (α0 + α1 ∗ WEI + α2 ∗ DIST) ∗ TEGT
(β0+β1∗DIST+β2∗WEI+β3∗MPI)         (20)       

hEBTB = hEB0 + (α0 + α1 ∗ CVPLA + α2 ∗ TPI + α3 ∗ WEI + α4 ∗ MPI) ∗

TEBT
(β0+β1∗CVPLA+β2∗WEI+β3∗MPI+β4∗TPI+β5∗DIST+β6∗WEI:DIST)                                                (21) 

hEBTc = hEB0 + (α0 + α1 ∗ WEI + α2 ∗ WTI + α3 ∗ TPI + α4 ∗ MPI + α5 ∗ DIST) ∗

TEBT
(β0+β1∗TPI+β2∗DIST)                                                                                                           (22) 

wherehEGTA is the E. globoidea height at time T in site A; hEBTB  and hEBTc  are the E. 

bosistoana height at time T respectively in sie B and C. hEG0 and hEB0 are the initial height of 
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E. globoidea and E. bosistoana. TEGT and TEBT are the age of E. globoidea and E. bosistoana. 

Others are as defined earlier in Section 3.2.2.2.   

 

Figure 3.3 E. globoidea juvenile height model residual plots: A) final model residuals and B) 

validation residuals with loess line (blue); C) and D) respectively final model and validation 

residuals distribution. 

The E. bosistoana height model behaved differently at different sites. At site B, the 

model underpredicted moderate height values (Figure 3.4), while at site C, the model followed 

E. globoidea’s residual distribution pattern (Figure 3.5). At the site B, RMSE, MAE and SE 

increased respectively to 0.603, 0.429 and 0.615 from the fit statistics, while BIAS and AICc 

reversed in turn to 0.024 and 645.847 from the fitting statistics.  In contrast to that, at the site 

C, all the fitting statistics features were reduced during validation (Table 3.9).  
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Table 3.9 Fitting and validation statistics of the final height growth equations. 

Species Site Action RMSE MAE BIAS AICc SE 

E. globoidea A Fitting 0.453 0.338 0.009 1000.842 0.455 

Validation 0.348 0.273 0.011 154.103 0.354 

E. bosistoana B Fitting 0.518 0.385 0.032 1502.06 0.521 

Validation 0.603 0.429 0.024 637.045 0.614 

C Fitting 0.342 0.274 0.001 247.399 0.347 

Validation 0.322 0.251 0.001 77.077 0.339 

 

 

Figure 3.4 E. bosistoana juvenile height models residuals (m) plot for site B; A) Final model 

residuals and B) validation residuals representation with loess line (blue); C) and D) represents 

the residuals distribution of model fit and validation dataset. 
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Figure 3.5 E. bosistoana juvenile height models residuals (m) plot for site C; A) Final model 

residuals and B) validation residuals representation with loess line (blue); C) and D) represents 

the residuals distribution of model fit and validation dataset. 

3.3.4 Key variables for micro-site height growth 

Juvenile E. globoidea height was significantly correlated with WEI, MPI and plot 

distance from the top ridge (DIST) (Table 3.10 and Figure 3.6). Therefore, these variables were 

added to the final height yield model represented by Equation 18. All three had large effects 

on height growth. The micro-sites highly exposed to wind had the lowest height growth, and 

tree height decreased with reduced morphometric protection (MPI). Trees close to the top ridge 

had the lowest height growth, while the height increased with distance proportionally until the 

age of 4.5 years. From then, trees at the mid-distance from the top ridge grew taller.  
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Table 3.10 Tested variables and their significance on juvenile height growth. 

Variables Significance code 

 A B C 

Maximum daily temperature  NS NS NS 

Profile curvature NS NS NS 

Plan curvature NS *** NS 

Topographic position index (TPI) NS *** *** 

Wind exposure index (WEI) *** *** ** 

Wetness index (TWI) NS *** * 

Morphometric protection index (MPI) *** *** *** 

Distance from the top ridge (DIST) *** *** *** 

Signif. Codes: *** = p<0.001, ** = p<0.05; NS = p≥0.05 
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Figure 3.6 Micro-topographic effect of E. globoidea height growth: (A) Wind exposure effect, 

(B) Morphometric protection effect, and (C) Distance from the top ridge effect. 

E. bosistoana height growth was influenced by different factors at different sites (Table 

3.10). At the site B, plan curvature (CVPLA), MPI, distance from the top ridge (DIST), TPI, 

WEI, and interaction between wind exposure and distance from the top ridge influenced tree 

height (Figure 3.7). In sites with local horizontal concave surfaces, trees were taller than the 

trees on horizontal flat or convex surfaces. TPI also showed a similar pattern: trees were taller 

in valleys than on ridges. Until age 4.5 years, trees nearer the ridge experienced faster height 

growth than trees in the valley. After age 4.5 years, the converse was true (Figure 3.7 (D)).  
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Higher MPI and lower WEI resulted in greater height growth. Distance from the ridge top 

showed that the distant trees were growing faster than the trees closest to the ridge top. 

However, the lowest WEI with distant micro-site had the highest height growth compare to 

low WEI and a position close to the ridge. On the other hand, high WEI with farthest micro-

site which means close to the valley floor was the worst for tree height at the B site.  

In the case of the site C, E. bosistoana height was affected by WEI, WTI, TPI, MPI and 

distance from the ridge top (DIST) (Figure 3.8). The MPI and WEI effects were similar to other 

results, with high MPI and low WEI resulting in increased tree height (Figure 3.8(A) & (E)). 

An increase of TPI affected the tree height, but at age 2.5 years the effect reversed, with trees 

in valleys having greater height growth, relative to trees on midslopes or ridges. The trees 

situated at mid-distance from the ridge top grew taller than those closest to, and furthest from, 

the ridge top. Interestingly, the surface wetness minimally influenced the tree height (Figure 

3.8 .B).    
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Figure 3.7 Micro-topographic effects on E. bosistoana height growth at site B; (A) Plan curvature, (B) Morphometric protection effect, (C) Distance 

from the top ridge effect, (D) Topographic position effect, (E) Wind exposure effect and (F) WEI and DIST interaction effect. 
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Figure 3.8 micro-topographic effect of E. bosistoana height growth at site C: (A) Wind exposure, (B) Wetness effect, (C) Distance from the top 

ridge effect, (D) Topographic position effect, and (E) Morphometric protection effect. 
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3.3.5 Juvenile survival model  

Analyses revealed that the smallest residual mean squares and the least biased residuals 

were produced by augmenting survival models (Equation 23 and 24) with topographic 

attributes. The rate of mortality diminished with time in most plots, but mortality was higher 

during later years than during the early years.  

SEGTA = −e(α0+α1∗CVPLA+α2∗CVPRO)∗T
(β0+β1∗DIST+β2∗CVPLA)

                                                        (23) 

SEBTC = −eα0∗T
(β0+β1∗CVPRO)

                                                                                                  (24) 

where, SEGTA and SEBTC  are the survival proportion of E.globoidea and E. bosistoana at time 

T in site A and C; others are defined earlier in section 3.2.2.2. 

The residual distribution against predicted and independent datasets was normally 

distributed with minor distortions for all species and sites (Figure 3.9 and Figure 3.10). 

Validation for both species was undertaken and the survival proportion model reported with a 

minimal increase in precision and bias (Table 3.11, and Figure 3.9 and Figure 3.10). In the case 

of E. globoidea, the RMSE and MAE reduced during validation while they increased slightly 

with E. bosistoana model validation. 

Table 3.11 Juvenile survival proportion model fitting statistics. 

Species Site Action RMSE MAE BIAS AICc SE 

E. globoidea Avery 
Fitting 0.108 0.076 -0.001 -1224.5 0.109 

Validation 0.097 0.068 -2.08617e-06 -411.26 0.099 

E. bosistoana Dillon 
Fitting 0.019 0.013 -7.951e-06 -1234.4 0.020 

Validation 0.021 0.015 2.980e-05 -339.42 0.022 
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Figure 3.9 E. globoidea juvenile survival models residuals (m) plot for site A; A) Final model 

residuals and B) validation residuals representation with loess line (blue); C) and D) represents 

the residuals distribution of model fit and validation dataset. 
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Figure 3.10 E. bosistoana juvenile survival models residuals (m) plot for site C; A) Final model 

residuals and B) validation residuals representation with loess line (blue); C) and D) represents 

the residuals distribution of model fit and validation dataset. 

3.3.6 Key factors to juvenile micro-site survival 

E. globoidea survival was influenced by plan and profile curvature, WEI and distance 

from the ridge top (Table 3.12 and Figure 3.11). In concave and flat areas, the mortality rate 

was steady whereas in convex areas mortality reduced with time. This result was repeated for 

profile curvature, where on the raised surfaces trees survived in higher proportions than on 

hollow or flat surfaces. The micro-site highly exposed to wind had a lower survival rate than 

the areas less exposed to the wind. Moreover, plots a long distance from the ridge top showed 

lower survival rates than the ones close to it. 
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Table 3.12 Tested variables and their significance on juvenile Eucalyptus survival proportion. 

Variables Significance code for different sites 

 A C 

Maximum daily temperature  NS NS 

Profile curvature *** * 

Plan curvature * NS 

Topographic position index (TPI) NS NS 

Wind exposure index (WEI) ** NS 

Wetness index (TWI) NS NS 

Morphometric protection index (MPI) NS NS 

Distance from the top ridge (DIST) *** NS 

Signif. Codes: *** = p<0.001, ** = p<0.05; NS = p≥0.05 

E. bosistoana survival was influenced only by profile curvature (Figure 3.11 (E)). It 

showed that, in gullies, higher proportions of trees survived than on flat surfaces or ridges. 

However, it had a very narrow effect in size and pattern.   
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Figure 3.11 Topographic effect of E. globoidea survival at Site A: (A) Plan curvature, (B) Profile curvature effect, (C) Wind exposure effect, and 

(D) Distance from the ridge top effect; E) E. bosistoana survival with profile curvature effect at the site C. 
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3.4 Discussion 

3.4.1 Juvenile micro-site models  

While earlier work has modelled juvenile trees on a broad scale (e.g., Avila, 1993; 

Mason & Whyte, 1997), the juvenile micro-site models described here have shown that it is 

possible to model juvenile crops at a finer scale. Individual juvenile trees have also been 

modelled by applying mathematical equations (Nyström & Kexi, 1997; Ritchie & Hamann, 

2006; Zhang et al., 1996) and explaining different competing variables (Nyström & Kexi, 1997; 

Preece et al., 2015; Richardson et al., 2006). Kohama et al. (2006) and Weiskittel et al. (2008) 

studied juvenile and mature stand tree growth on a micro-scale, and  Weiskittel et al. (2008) 

proposed a modelling framework but only for mature stand trees. Although, juvenile and 

mature stand trees have different growth requirements and competition indices. The model 

presented in this study for juvenile trees has field applicability, which could be incorporated 

into a decision support system for silviculture at the site with similar characteristics.   

3.4.2 Micro-site variables affect juvenile tree height growth 

This study showed that juvenile tree height growth and survival were affected by micro-

site related variables. Zhang et al. (1996) found the same but at a broader scale with loblolly 

pine in the northern USA. Topographic variables are major drivers of tree growth in many hilly 

regions (Ares & Marlats, 1995), as they relate to both climatic and edaphic factors (Adams et 

al., 2014). For both of the species in this study, the sheltered micro-sites resulted in greater 

height growth. For instance, distance from the ridge top means that the trees in the bottom of 

the valleys could experience less wind load than trees on the ridges. Similar results were found 

by Brüchert and Gardiner (2006) who showed that wind could influence the aerial architecture 

of the trees. Both morphometric protection and wind exposure index influence supported this 

result. Valley floors are expected to have greater rooting depth, meaning the trees are more 

stable and better physiologically supported in terms of nutrients and moisture. However, this 
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study found that middle distance from the ridge top was the best for E. globoidea, which may 

relate to the optimum range of moisture availability to this species and sensitivity to higher soil 

moisture. 

E. bosistoana grew taller in concave, depressed (valley) surfaces, and in locations 

farthest from ridges, which had relatively low WEI. This can be explained in a similar way to 

E. globoidea, but suggests that this species is more water-demanding than E. globoidea at 

young ages.  Rohner et al. (2018) and Monserud and Sterba (1996) reported that the high slope 

results in shallow soil and less moisture availability due to lateral moisture flow. This is in line 

with the TPI effect, as it described each micro-site with respect to the slope.  

3.4.3 Micro-site variability on juvenile tree survival 

This study reported that E. globoidea was sensitive to higher moisture levels, but could 

withstand harsher conditions means can survive limited resources such as moisture, than E. 

bosistoana. Results suggested that E. globoidea may experience sub-optimal optimal levels of 

soil moisture for tree health in valleys and hollows. Conversely, E. bosistoana survived better 

in gullies, where there is presumably a chance to access higher moisture availability. Bathgate 

et al. (1993) reported conditions similar to the above for E. regnans in the North Island of New 

Zealand. Moreover, Ares and Marlats (1995) found and concluded that in mountain regions of 

Argentina coniferous trees died on north facing slopes due to overheating, as this aspect 

receives more radiative heat than other aspects, which may increase the water stress.   Distance 

from the ridge top represents the sites’ flatness. The further a site is from the ridge top, the 

flatter it is. In this situation, Mason and Whyte (1997) reported that frost negatively influences 

juvenile tree survival, which could be an alternative or additional reason for increased mortality 

of E. globoidea in hollows.   
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3.4.4 Data constraints  

The initial height for the young Eucalyptus plantations was not recorded immediately 

after planting. For that reason, the initial height model was fitted by assuming Eucalyptus 

seedlings met the Pinus radiata plantation standard, which was 0.25 m in height at time of 

planting (Mason & Whyte, 1997). The use of this standard height value might have influenced 

model stability at the early ages because the model extrapolated the height values for that age. 

Therefore, these models should be used cautiously over the period from planting to first 

measurement age.  

 High-resolution soil data was not available for these sites: the plantations were not 

established on a single soil type. Unfortunately, the sampling strategy applied was not 

sufficiently comprehensive to characterise soil variability, probably because the number of soil 

sampling points was low compared to standard soil studies (Brocca et al., 2007; Padilla & 

Pugnaire, 2007). Though the soil data appeared variable during preliminary data assessment 

(e.g., SD, Min, and Max), they did not have a statistically significant effect on height growth, 

nor on survival. Including higher-resolution soil data may improve model precision in future 

studies.       

Including climatic variables into the models may give greater explanatory power and 

understanding about causal processes (Jame & Cutforth, 1996; Michael et al., 2017). However, 

in this study, it was not statistically significant to incorporate temperature into the final model. 

This is because no data existed at a sufficiently fine resolution.   

3.5 Conclusion  

This study successfully demonstrated a statistically and biologically logical framework 

to model juvenile tree growth at micro-site levels. It also identified and explained height and 

survival variation of two dryland Eucalyptus species. For both species, topographically 

sheltered surfaces yielded greater height growth and survival. Furthermore, it was also shown 
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that E. globoidea thrived with lower available moisture, while E. bosistoana preferred moister 

soil conditions. 

This study and models can help the decision making process about site preparation 

when establishing new plantation sites, as well as helping to decide about silvicultural regimes 

for new plantations. It also indicated about within-stand resource partitioning by juvenile plants 

and reinforced the importance of matching species to sites. 
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4. Modelling the growth and survival of juvenile Eucalyptus globoidea and Eucalyptus 

bosistoana in New Zealand.  

4.1 Introduction 

Tree growth and development are complex processes (Rauscher et al., 1990), and greatly 

influenced by a stand’s resource conditions e.g. climatic and edaphic conditions (Toledo et al., 

2011; Yang et al., 2006). However, it is essential to predict future forest growth and 

development to practice proper forest management (Ritchie & Hamann, 2008), which for 

commercial forestry, leads ideally to high stem growth and financial returns. For  good growth 

prediction, it is necessary to have proper information from the early stages of establishment 

before canopy closure (Mason & Whyte, 1997; Zhao, 1999). Consequently, growth dynamics 

at the juvenile stage of a plantation are crucial as this will generate site-specific information to 

assist with modelling later developmental stages (Avila, 1993). The growth and survival of the 

juvenile stage are often more complex than the mature stages as both inter and intra-specific 

competition occur, but intra-specific competition dominates mature stands where only one 

species was planted.  

Stand models for mature trees have been well explored from several different 

perspectives (Burkhart & Tomé, 2012; Weiskittel et al., 2011) and implemented in practice by 

both researchers and forest managers. Also, different mature stand-level modelling approaches 

have been applied to increase the level of understanding (Clutter, 1963; Mäkelä et al., 2000; 

Peng et al., 2002a) and applicability in the field (Battaglia & Sands, 1998). Conversely, since 

their inception (Belli & Ek, 1988; Payandeh, 1987), growth and yield models of juvenile 

plantations are less common than mature stand models (Zhang et al., 1996). Several studies do 

exist, describing influences on young stands due to site preparation and seedling handling 

(Mason, 2001; Mason et al., 1997; Westfall et al., 2004), various levels of stand density (Zhang 

et al., 1996) and competition with weed and surrounding vegetation (Comeau & Rose, 2006; 
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Tesch & Hobbs, 1989; Watt et al., 2004; Watt et al., 2003). Also, the ecophysiological 

processes of juvenile plantation growth were also modelled by Rauscher et al. (1990) for young 

poplar plantations at an individual tree level. 

Considering the above, there have been recent advancements in juvenile growth and 

yield modelling, but such models are seldom used by forest managers to make decisions 

because of their associated complexity and uncertainty (Richardson et al., 2006). Mäkelä et al. 

(2000) reported that incorporating the most desired elements from both models, which 

rationalise the biological realism in traditional mathematical models, could be a way to make 

the models more useful. However, to be truly useful, models also need to be simple and 

developed in close collaboration with the end users with readily available data (Sands et al., 

2000).  

Furthermore, most of the stand-level or individual tree juvenile models use competition 

indices or correlated variables as surrogates for other variables. For instance, Villalba et al. 

(1992) explained tree growth variations in terms of spatial patterns of climate change. 

Additionally, it gives extra confidence to the users to input directly measured values, thus 

reducing risks from overestimation or assumption. So, to develop field compatible stand-level 

models, it is crucial to test and identify the essential predictors from a comprehensive set of 

site variables directly determined from topography, soil and climate. Then, these variables must 

be included in the modelling framework to predict and explain at the same time. 

The overall goals of this study were to test and identify the essential variables that drive 

the height growth and survival of juvenile plantations and to add them into a modelling 

framework. The specific objectives were : 

i) to identify site-specific topographic, edaphic and climatic variables that 

influence the height growth of juvenile E. globoidea and E. bosistoana, and to 

include these in a height growth model; 
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ii) to identify site-specific topographic, edaphic and climatic variables that 

influence the survival of juvenile E. globoidea and E. bosistoana, and to include 

these in a survival model. 

4.2 Materials and methods 

4.2.1 Experimental sites 

The study covers all the plantation sites managed by the New Zealand Dryland Forest 

Initiative (NZDFI). Twenty-five sites were planted with E. bosistoana and E. globoidea, 

located in the northern South Island and the North Island, mostly on retired pastures. They were 

situated between 38° 24' 41.94" S and 43° 11' 46.80" S Latitude, and 177° 41' 34.97" E and 

172° 39' 08.15" E Longitude (Figure 4.1). The altitudes of these sites ranged from 53 - 640 

meters above sea level (MASL). They experienced cool, dry sub-humid to humid climates with 

total annual precipitation of 840 - 7935mm and mean annual temperatures of 6 - 20℃ 

(summary of 2009 - 2016). However, both temperature and precipitation had a spatial variation 

across the planting sites due to their proximity to the coast and changes in topography (Mason 

et al., 2017). The growing season in New Zealand is typically from October to April, but the 

duration of the growing period varies due to climate and elevation gradients (Wardle, 1991). 

The sites covered most of the New Zealand soil classes (Hewitt, 2010), but were dominated by 

different types of pallic soils. A comprehensive soil classification list is presented in Appendix 

II.  
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Figure 4.1 Locations of permanent sample plots (PSPs) and virtual climatic stations (VCSN). 

4.2.2 Data collection and preparation 

All the data related to plantations, topography, climate and soils were collected for both 

species from all 25 NZDFI plantation sites. The data collection and preparation procedures are 

described below. 
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4.2.2.1 Tree data 

NZDFI sites had a total of 84 permanent sample plots (PSPs), planted with the study 

species (E. bosistoana and E. globoidea) from the year 2009 to 2014. They were of varying 

sizes (384 - 784m2) and shapes (e.g., circular, square and rectangular). NZDFI conducted a tree 

inventory during some of their growing seasons and recorded height (h), and status (dead or 

alive) of all trees for all PSPs. However, trees were not measured immediately after planting. 

In this study, the inventory data for the period 2010 - 2016 were used.  

Individual tree height and survival data were averaged at each plot at each measurement 

time. Due to the small sizes of trees, there were insufficient measurements of diameter at breast 

height (DBH) to calculate DBH or basal area. The survival proportion (S) was calculated for 

each plot from the number of trees that survived per plot (Table 4.1).  
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Table 4.1 Summary of plantation inventory data. 

Total 

sites 

Species Total 

PSPs 

Measurement 

periods 

(Year) 

Age (Years) Plot size (m2) Height (m) Survival 

    Min  Max  Min Max Min. Max. Mean SD Min. Max. Mean SD 
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4.2.2.2 Topographic data 

Land Information New Zealand (LINZ) hosts the most up-to-date nationwide set of 

topographic data and maps. In the case of topography, these data are well defined and have a 

planimetric average of ±22m and a vertical average of ±0m accuracy (LINZ, 2017). Therefore, 

nationwide 15m x 15m digital elevation model (DEM) tiles (Barringer et al., 2002; Columbus 

et al., 2011) were downloaded through the LINZ data service (LINZ, 2017). In total 30 tiles 

were processed by using ArcMap 10.4.1(ESRI, 2012) for the final analyses. 

A list of primary and secondary surface attributes was derived from the DEM by the 

procedure described in Chapter 3. The values of those attributes were presented in Table 4.2.  

Table 4.2 Summary of estimated topographic attributes. 

Attributes E. bosistoana E. globoidea 

Min Max Mean SD Min Max Mean SD 

Aspect (°) 0 352.87 142.52 124.52 0 350.84 154.14 124.24 

Slope (°) 0 23.57 10.37 6.55 0 27.18 12.29 7.35 

Elevation (m) 53 640 218.54 152.41 53 637 218.62 151.11 

Curvature -1.33 3.11 0.27 0.94 -0.89 2.67 0.23 0.89 

Profile curvature -2 1.32 -0.15 0.62 -2.32 0.75 -0.24 0.70 

Plan curvature -1.04 1.31 0.13 0.46 -0.56 0.75 0.0 0.33 

TRI 0 16.09 7.21 4.33 0.0 19.90 8.48 5.04 

TPI -1.12 2.25 0.21 0.67 -0.75 2.12 0.23 0.65 

WTI 2.15 13.37 8.21 4.00 2.18 13.36 8.58 3.75 

WEI 0.87 1.19 1.02 0.09 0.87 1.16 1.02 0.08 

MPI 0.01 0.23 0.09 0.05 0.02 0.20 0.10 0.08 
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4.2.2.3 Soil data 

The NZLRI System comprises several physical resource themes. These themes are 

based on the NZLRI with a polygon layer with national coverage. This layer is also 

supplemented with soil survey layers. Fundamental soil layers (FSL) are part of the NZLRI, 

describe and characterise soils of New Zealand (Newsome et al., 2008). FSL layers are freely 

available as georeferenced vector layers through the Land Resource Information System portal 

(LRIS, 2017).  

The most recent FSL layers were downloaded from the NZLRI portal and processed in 

ArcMap 10.4.1 (ESRI, 2012) to extract values corresponding to the centre point at each PSP 

location. The soil data included both physical and chemical attributes. All the data were then 

linked to the final dataset (Table 4.3).
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Table 4.3 Summary statistics of soil data. 

Variables Unit E. bosistoana E. globoidea 

Min Max Mean SD Min Max Mean SD 

Potential rooting depth (PRD) m 0.10 1 0.41 0.29 0.10 1 0.43 0.30 

Potentially available water (PAW) mm 1 10 6.36 3.10 1 9 5.38 3.04 

Potential readily available water (PRAW) mm 1 9 5.28 2.83 1 10 6.32 2.90 

Top soil gravel content (GARV) % 1 3 2.45 0.88 1 4 2.44 0.91 

Rock outcrops and surface boulder (ROCK) % 0 1 0.10 0.30 0 1 0.11 0.32 

Drainage class (DRAIN) % 0 5 2.88 2.01 0 5 2.99 2.12 

Permeability (PRM) Ratio 1 4 2.02 0.79 1 4 2.11 0.93 

pH - 1 9 4.69 2.52 1 9 4.73 2.66 

Salinity (SAL) % 0 0 0.01 0.01 0 0 0.01 0.01 

Cation exchange capacity (CEC) cmoles/kg 1 8 4.60 2.44 1 8 4.48 2.45 

Phosphorus retention (PRET) % 1 9 3.97 2.11 1 9 3.99 2.19 

Carbon (C) % 0 9 4.63 3.38 0 9 4.45 3.53 
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4.2.2.4 Climatic data 

The National Institute of Water and Atmospheric (NIWA) Research operates 

meteorological stations throughout New Zealand, with higher spatial frequency for the same 

type of measurements than other similar types of measurements. Those measurements are 

interpolated daily for the whole country on a regular (~5km) grid (NIWA, 2015b), and the 

system is called the Virtual Climatic Station Network (VCSN). The closest VCSN points to 

the experimental sites were selected from the NIWA website. Locations of the VCSN points 

are shown in Figure 4.1. 

From the VCSN, temperature, precipitation, radiation, and potential evapotranspiration 

(PET) data were extracted. PET was estimated by NIWA using the Penman-Monteith equation, 

as described by Burman and Pochop (1994). Temperature data were separated based on daily 

maxima (Tmax) and minima (Tmin), then summarised by year and month, and averaged for 

each PSP. Radiation data were summarised by summing for the whole period. Besides these, 

precipitation and PET were summed for the whole period for each PSP. Finally, total PET 

subtracted from total precipitation to get net moisture yield (NMY) for the whole experimental 

period. Detailed summary statistics of all climatic information are presented in Table 4.4.  
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Table 4.4 Summary of climatic data from VCSN points. 

Species Data period 

(Year) 

Temperature monthly mean 

daily maximum (°C) 

Temperature monthly mean 

daily minimum (℃) 

Total annual rainfall (mm) Radiation (MJ m-2day-1) 

Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd 

E. bosistoana 2009-2017 15.78 20.17 17.86 0.96 5.69 10.20 8.41 0.79 840 7930 2950 1370 10.79 17.01 1.35 14.2 

E. globoidea 2009-2017 16.25 20.17 18.04 0.98 6.57 10.20 8.50 0.84 840 7930 1650 2950 10.79 15.97 13.82 1.34 
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4.2.3 Modelling approach 

Juvenile plantation height before canopy closure is expected to grow exponentially. The 

modelling approach for juvenile forest plantations was explained in Chapter 3. In this study, 

the same modelling approach was applied by adding the influence of site-specific variables. 

The height yield growth models were fitted with Equation 9, and the survival proportion 

was modelled using Equation 14. The coefficients were separated and linearly expanded by 

following Equations 10 and 11 with explanatory variables.  

4.2.4 Model testing and validation 

 Model validation is a vital part of model development. It does not only test the 

sensitivity of the model but also informs the user about the necessary precautions that need to 

be taken before final application. The background and procedure of model testing and 

validation were reported in Chapter 3. 

 This study followed the same sensitivity metrics described in Chapter 3. Besides those, 

the predictive ability of the models was evaluated using prediction errors or predictive residual 

error sum square (PRESS) statistics. These residuals were calculated by omitting each 

observation in turn from the data, fitting the model to the remaining observations, predicting 

the response for the omitted observation, and comparing the prediction with the observed value 

(Equation 26), 

Oi − Pi,−i = ei,−i(i = 1,2, … . . , n)                                                                                              (25) 

where 𝑂𝑖 is the observed value, 𝑃𝑖,−𝑖 is the estimated value for observation 𝑖 (where the latter 

is absent from the model fitting) and 𝑛 is the number of observations. Each model has 𝑛 PRESS 

residuals associated with it, and the PRESS (Prediction sum of square/P-square) statistic is 

defined as (Myers & Myers, 1990): 

PRESS = ∑ Oi − (Pi,−i)
2n

i=1 = ∑ (ei,−i)
2n

i=1                                                                             (26) 
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The bias and precision of models were analysed by computing means of the PRESS 

residuals and P-square values.  

For validation there was no independent dataset available for this study, nor was the 

dataset large enough to be subdivided into fit and validation datasets. Therefore, model 

validation was carried out by ‘leaving-one-out’ method of cross-validations (LOOCV), a 

method which is also called “Jackknife” (Arlot & Celisse, 2010). Thus, the models were fitted 

𝑛 times, leaving out each sample plot once, so that the number of fittings was equal to the 

number of plots (Sánchez-González et al., 2005), and residuals of predictions for the plots left 

out were compared with those of the overall model fit. “Bootstrapping” is an alternative and 

similar kind of approach to “Jackknifing”. It often offers a bit more flexibility by maintaining 

equal degrees of freedom (DF) during validation (Efron & Tibshirani, 1994). However, 

considering the data structure in this study, the trade-off between the two approaches was very 

small. Hence, “Jackkinfing” was the most parsimonious approach. 

 For model evaluation, the metrics described in equations 15, 16, 17 and 18 were 

considered. In this case, the overall estimation of these metrics was carried out by averaging as 

the prediction errors were calculated for each observation.  

4.2.5 Statistical analysis 

Neither the NZDFI plantations nor the PSPs therein were established in a single year. 

The PSPs were re-measured at different time intervals. Hence, the frequency of measurement 

was not equal for all the PSPs. Also, a high number of explanatory variables were taken into 

account from soil, climatic and edaphic variables. Consequently, to avoid any kind of vague 

extrapolation by the final model, the most frequently measured points were separated and 

modelled by using base model Equation 9 and 14. Then by separating the coefficients, a 

hierarchical clustering through recursive partitioning analysis was carried out to identify the 

most important variables. Next, those important variables and their interactions were modelled 
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against coefficients by using multilinear least square (MLS) regression (Equations 10 and 11). 

Finally, the significant variables and their interactions were included and modelled against 

height yield and survival through nonlinear least square regression (NLS) (Equations 9 and 

14).      

All statistical analysis was performed in the R statistical environment (R Core Team, 

2017). An assessment for potential multi-collinearity was performed for all the explanatory 

variables at the beginning by using variance inflation factor (VIF) with “vif.mer” function of 

car package in R (Fox & Weisberg, 2011). Elevation, slope, topographic ruggedness, total 

curvature and PET were correlated with variables chosen for use in models. Hence they were 

left out from the model building procedure. Then the hierarchical clustering was executed 

through recursive partitioning, based on analysis of variance (ANOVA ), by using packages 

“rpart” and “rpart.plot” and their corresponding functions for this analysis (Therneau et al., 

2010). Model coefficients were fitted and separated by running the “lm” function in the base 

package. Finally, the height and survival models were fitted using the “nls” function in the base 

package with the significant variables. Models were validated by following the previously 

explained procedure. “rmse”, ”mae”, and “bias” functions were used from the “Metrics” 

package (Hamner & Frasco, 2018), while the “Rsq.ad” and “AICc” function were used from 

the “qpcR” package (Spiess & Ritz, 2014). Besides this, residuals were visually inspected for 

their normality and variance homogeneity. All the graphical analyses and presentations were 

performed with the “ggplot2” (Wickham, 2016) package.  

4.3 Results 

4.3.1 Site-specific juvenile height yield models 

Final height growth models (Equations 25 and 26) demonstrated the site effect on 

juvenile tree height yield. Model residual plots (Figure 4.2) and fitting statistics (Table 4. 5) 

showed that for both species the models were reasonably precise. The residual plots were well 
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distributed, with little or no heteroscedasticity. The model evaluation residuals were also well 

distributed and followed a similar pattern to the fitted models.  

Evaluation statistic values were reasonably reliable with a minor negative bias (Table 

4. 5), which indicated that the models slightly underpredicted the tree heights. For E. 

bosistoana, the presence of bias was more visible than for E. globoidea (Figure 4.2). Model 

mean and predicted residual sum of squares (MPRESS and MAPRESS) statistics for two 

Eucalyptus species showed (Table 4. 5) minimal scores in both mean and absolute form. 

However, a large increase of RMSE, MAE and SE in the validation statistics can be seen. The 

corrected AIC values for both of the models were small enough to confirm their accuracy 

(Table 4.5).   

hEGT = h0 + (α0 + α1 ∗ Tmax)T
(β0+β1∗Radiation)                               (25)                                           

hEBT = h0 + (α0 + α1 ∗ WEI)T(β0+β1∗TWI+β2∗WEI)                                                            (26) 

In these equations, hEGT and hEBT are the height of E. globoidea and E. bosistoana at time T, 

h0 is the initial height immediately after planting (0.25cm in this study case), Tmax is the 

average daily maximum temperature, Radiation is the total amount of radiation, WEI is the 

wind exposure index, TWI is topographic wetness index, and α and β are the model 

coefficients. 
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Figure 4.2 Height yield model prediction and residual plot: A1) predicted height yield against 

model residuals (blue points-model fitting, grey points-model validation residuals and blue 

line-loess line); B1) model fitting residuals distribution for E. bosistoana; A2) predicted height 

yield against models residuals (red points-model fitting, grey points-model validation residuals 

and red line shows the loess fit); and B2) model fitting residuals distribution for E. globoidea. 
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Table 4. 5 Height growth model fitting and validation statistics. 

Species Action RMSE MAE BIAS SE AICc R2 adj. MPRESS MAPRESS 

E. globoidea Fitting 0.864 0.697 -0.031 0.880 295.54 0.6858 - - 

 Validation 1.9666 1.5799 -0.2341 3.983 300.50 - -0.047 0.630 

E. bosistoana Fitting 0.822 0.660 -0.037 0.840 301.16 0.650 - - 

 Validation 1.8831 1.5469 -0.3152 3.670 301.16 - -0.040 0.620 
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4.3.2 Key juvenile height growth factors   

The recursive partitioning analyses showed that E. globoidea height was influenced by 

maximum temperature (Tmax) and radiation, whereas, E. bosistoana height was influenced by 

the wind exposure index (WEI) and topographic wetness index (TWI) (Figure 4.3). Both Tmax 

and radiation were significant in the final model (Equation 25) for E. globoidea. Conversely, 

only WEI and TWI were significant on E. globoidea height in the final model (Equation 28). 

The results showed that, with increasing temperature and radiation, E. globoidea attained 

greater height (Figure 4.4 (A2 and B2)). E. bosistoana height growth was positively influenced 

by TWI, and negatively influenced by WEI (Figure 4.4 A1). Topographic wetness index(TWI) 

indicates the water availability at certain spatial points, with higher values indicating better 

water availability. On the other hand, WEI describes exposure to wind for a specified location, 

and it showed that with less exposure E. bosistoana grew taller (Figure 4.4 (A1 and B1)).  

 

Figure 4.3 Decision trees from the recursive partitioning of independent variables against 

height yield at a single age. Each factor presents with a threshold value, and each node 

represents with its splitting values and a number of observations of predicted class. A) 

represents E. globoidea, and B) E. bosistoana. 
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Figure 4.4 Effect of A1) topographic wetness index (TWI), B1) wind exposure index (WEI) on 

E. bosistoana;  A2) maximum temperature, and B2) radiation on E. globoidea height growth. 

4.3.3 Site-specific survival model 

The site-specific survival models (Equations 27 and 28) represented a logical 

framework. Both models were relatively precise in their predictions of survival proportion. The 

residuals plots for both fitted and evaluation models were homogenously distributed. Ranges 

for residuals were small, although, in the case of E. globoidea, the model was unstable at the 

beginning of the period (Figure 4.5 (A2)). For both species, there were a few outliers (Figure 

4.5). The E. bosistoana survival model was comparatively more stable and precise than that 

for E. globoidea, except for one extreme outlier.   
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SEGT = e(((α0+a1∗Tmin+a2∗TPI))∗T
β0)                                                                                    (27) 

SEBT = e(((α0+α1∗Tmin+α2∗Radiation))∗T
β0)                                                                          (28) 

In these equations, SEGT and SEBT are the survival proportions for E. globoidea and E. 

bosistoana at time T, where Tmin is minimum temperature, TPI is the topographic position 

index, and Radiation is the total amount of intercepted radiation for the study period at each 

PSP position. α and β variables with subscripts are model coefficients.  

From the fitted and validation statistics (Table 4.6), models had reasonable goodness-

of-fit statistics. RMSE, MAE and SE were small, though they increased by a small amount 

during validation. MPRESS and MAPRESS were fairly small. Bias for fitting statistics was 

negative, but for validation it was positive for E. globoidea. Furthermore, the AICc values for 

both species were fairly small, which reconfirmed the accuracy of the models (Table 4.6).  
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Figure 4.5 Survival models predicted, and residuals plots: A1) predicted survival against model 

residuals (red points-model fitting, grey points-model validation residuals and blue line-loess 

line); B1) model fitting residuals distribution for E. bosistoana (red dashed line shows the 

mean); A2) predicted survival proportion against model residuals; and B2) model fitting 

residuals distribution for E. globoidea (the red dashed line shows the mean). 
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Table 4.6 Survival model fitting and validation statistics. 

Species Action RMSE MAE BIAS SE AICc R2 adj. MPRESS MAPRESS 

E. globoidea Fitting 0.167 0.109 -0.006 0.17 -99.636 0.561 - - 

 Validation 0.291 0.237 0.0001 0.092 -99.636 - -0.0068 0.382 

E. bosistoana Fitting 0.089 0.051 -0.007 0.090 -308.715 0.431 - - 

 Validation 0.130 0.103 -0.003 0.021 -308.716 - -0.00101 0.381 
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4.3.4 Key site-specific factors for juvenile survival 

The initial analyses from recursive partitioning showed that minimum temperature (Tmin) 

and topographic position index (TPI) were the two most important factors for E. globoidea 

survival. The same analyses found that Tmin and total radiation (Radiation) were important for E. 

bosistoana survival (Figure 4.6).  

During linear expansion of the coefficients and final model building, the above variables 

were found to correlate significantly with the 𝛼 coefficients, but not with the 𝛽 coefficients. 

However, the final model showed that, with increasing radiation and Tmin, the survival proportion 

increased for E. bosistoana (Figure 4.7 (A1 and B1)). The pattern was similar for E. globoidea, so 

sites with higher Tmin and TPI had higher survival proportions for E. globoidea than other sites, 

where E. globoidea experienced lower Tmin and TPI (Figure 4.7 (A2 and B2)).  

 

Figure 4.6 Decision trees from the recursive partitioning of independent variables against survival 

proportion at a single age. Each factor presents a threshold value, and each node represents its 

splitting values and a number of observations of the predicted class: A) E. globoidea and B) E. 

bosistoana. 
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E. globoidea survival was significantly influenced by WEI. A site more exposed to wind 

had lower survival rates and vice-versa. This effect was more pronounced immediately after 

planting and throughout the first year. In the case of E. bosistoana, MPI influenced survival. The 

site with higher protection also had the highest rate of survival. However, influences of MPI on E. 

bosistoana were milder than the WEI effect on E. globoidea.  

 

Figure 4.7 Effect of A1) topographic wetness index (TWI), B1) minimum temperature (Tmin) on 

E. bosistoana, A2) minimum temperature (Tmin), and B2) radiation on E. globoidea survival. 

4.4. Discussion 

Fitting height and survival proportion models by identifying and including site-specific 

factors added more model complexity as well as improving understanding of juvenile stands. The 
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augmenting process with different explanatory variables was not directly comparable for the two 

species. Juvenile plantation experiments need careful planning and organisation from the initial 

stage. This is because those initial steps can easily influence data and thus produce unexpected 

variations. Also, it is crucial to address the model distortions caused by repeated measurements.  

Simple models for the two species tested and considered edaphic and climatic information, 

which is a spatial scale evaluation. The two studied species seemed to be influenced by climatic 

and topographic variables, but not by soil variables. This may be due to the quality of the soil data 

available through FSL layers: their resolution was coarse and predicted values from the FSL layers 

were found to be highly inaccurate when compared with field observations from soil pits, as 

reported by Pearse et al. (2015). The climatic data were relatively precise, except for precipitation 

was likely imprecise (Mason et al., 2017), and potentially by a large margin at some sites.           

4.4.1. Site-specific growth and survival models  

This study successfully demonstrated a modelling framework for juvenile Eucalyptus 

plantations, which behaves in both a biologically and a methodologically rational way. The results 

here showed some differences between the two species. The height model for E. globoidea was 

less precise than that for E. bosistoana. This inconsistency may arise from the lack of initial height 

measurements. Zhang et al. (1996) reported that the model could be influenced by the initial 

measurements, which is an essential feature for juvenile plantation modelling. Additionally, the 

sample size for this study was small, and that may have influenced the results. For both species, 

the models were negatively biased which means that some under-prediction occurred. These 

underpredictions may be caused by the site conditions, as all the sites in this study are collectively 

known as dryland sites of New Zealand. Also, there is a significant lack of information about the 

seedling quality as well as the site conditions when these species were planted. 
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The mortality models were considerably more precise than the height models because they 

had better initial data and a robust dataset compared with the height dataset, for example, the initial 

number of seedlings per plot and the size of the plots, though needed to be taken into account at 

the time of model application.  

Although LOOCV or jack-knifing is a widely used model evaluation method, the 

confidence limit was very narrow in this study. Moreover, the height model performed poorly 

during validation. Some errors may have arisen from repeated measurements and an unbalanced 

dataset. For example, the age classes distribution were not homogenous for all the study sites. This 

limitation was addressed by using a two-step procedure: first a recursive partitioning and then final 

model fitting. However, height yield models still showed poor fits during validation. Those errors 

may be reduced by taking more measurements in future and making the dataset more orthogonal, 

as data quality significantly influences tree growth model building (Aubry et al., 2017; McRoberts 

& Westfall, 2014). 

4.4.2. Juvenile height growth factors 

Height growth of E. bosistoana and E. globoidea was significantly influenced by climatic 

and topographic variables. Ares and Marlats (1995) reported topographic features as the most 

significant influencers of tree growth in hilly regions, and they are simultaneously coupled with 

climatic and edaphic variables (Adams et al., 2014). All the NZDFI plantation sites are in 

comparatively dry hilly regions of New Zealand. Moreover, Brunori et al. (1995) found that 

topographical features significantly affect Eucalyptus height growth in deserts in Israel. 

Furthermore, Bullock and Burkhart (2005)  reported a spatial dependency in juvenile Pinus taeda 

stands, which is in line with these findings. The overall findings were in line with Davis et al. 

(1999) for seedling growth in central North America. 
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Wind exposure index indicates the amount of wind loading at a single spatial location. The 

WEI influenced the height growth of E. bosistoana. The results show that with low wind exposure, 

juvenile E. bosistoana trees grew taller. Brüchert and Gardiner (2006) reported similar results for 

Picea sitchensis in western Scotland and concluded that wind exposure can change the aerial 

architecture and biomechanics of planted trees. It also influences evapotranspiration, as well as 

provoking topsoil erosion (Berg et al., 2017; Fremme & Sodemann, 2018; Shukla & Mintz, 1982; 

Zhou et al., 2015). This finding was also similar to the E. bosistoana micro-site study results 

(Chapter 3). Moreover, Watt et al. (2008) reported that wind is likely to affect the abiotic and biotic 

factors of New Zealand plantation forests, and the effect can be greater with a modest increase of 

WEI (Moore & Watt, 2015). Though this research considered only mature Pinus radiata 

plantations, it can be equally applicable to young plantations in New Zealand.  

Topographic wetness index represents the water availability at any given spatial location. 

TWI also significantly affected E. bosistoana height growth. TWI calculation involves measuring 

flow direction and accumulation point from the elevation and slope. The plots with a higher 

wetness index grew taller, whereas the opposite occurred for the low wetness index plots. Water 

availability is one of the most important factors in tree growth (Beedlow et al., 2013) and trees 

adapt different strategies based on moisture conditions (McDowell et al., 2008). Mason (2001) 

reported that water supply is a critical factor for newly established plantations, and Watt et al. 

(2004) tested the effects of weeds on the juvenile growth of Pinus radiata, based on competition 

for available water.  

Eucalyptus globoidea height was significantly influenced by maximum temperature and 

radiation. Apart from water, these two are the most important tree growth modulators at any stage 

(Campillo et al., 2012; Richards, 2000; Ryan, 2010). Most of the plantation sites were in the dry 
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regions of New Zealand, and it is expected that the trees were limited by edaphic resources, for 

example, soil water and nutrients, though it was not explicitly proved in this study.  

The findings of other researchers were all in line with this study. For example,  Olesen and 

Grevsen (1997) reported that the vegetative growth of plants under such conditions was highly 

modulated by the temperature and intercepted radiation, which was consistent with these results. 

Prior and Bowman (2014) found that Eucalyptus species are sensitive to temperature and that they 

grow best within the temperature ranges 15°C - 24°C. Temperature effects are prominent at the 

mature stage though they can gain up to 20% total growth at the juvenile stage within the 

mentioned temperature range. Also, Way and Oren (2010) noticed that increasing temperature 

influenced tree growth positively, except in the tropical biome, which means that others biomes 

are maintained under their optimum temperature (Ryan, 2010). Also, Yang et al. (2006) found a 

growth increase with increasing temperature. 

The productivity of a plantation forest crop directly relates to its ability to intercept 

radiation (Campillo et al., 2012). Although it largely depends on the leaf architecture, generally 

trees with a high leaf area index (LAI) can intercept more light. However, the LAI of a juvenile 

tree can be influenced by several different factors, e.g., initial seedling morphology,  handling and 

preparation (Mason, 2001). These features were not extensively recorded for this study, which 

made these variables mechanistically complex to explain.  

4.4.3. Factors affecting juvenile survival 

Both of the study species were influenced by the minimum temperature (Tmin), which was 

also the most important variable amongst all the tested variables. This result was in line with Prior 

and Bowman (2014), where 11°C was reported as the minimum threshold Tmin for Eucalyptus. 

However, the sites in this study were experiencing much lower Tmin than 11°C. The study species 
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are known as dryland species (NZDFI, 2013), but their resistance to frost conditions and minimum 

temperature is still unknown. Paton (1981) reported that most of the Eucalyptus species have very 

low resistance to frost conditions.    

 Other than Tmin, E. bosistoana was significantly influenced by intercepted radiation. The survival 

proportion increased with increasing radiation. This may be possible that under some 

circumstances the trees simply run out of energy, and higher radiation level offers greater 

photosynthesis (Evans, 2013). The radiative heat may increase the air temperature (Caldwell et al., 

1998) as well as the photosynthetic capacity of the trees (Richards, 2000). Eucalyptus globoidea 

was also affected by the topographic position index (TPI), which describes the spatial concavity 

and convexity in relation to the surroundings. A higher TPI indicates that the surface is more 

convex, and a lower TPI indicates that it is more concave. The survival proportion was higher on 

convex surfaces than on concave surfaces. Again, the frost conditions of the sites may be the reason 

behind this, as mounding is a common practice for other plantation forest species to save seedlings 

from frost effects (Mason et al., 1996). Another reason could be that saturated soil around the tree 

roots is not suitable for this species. However, these findings need further validation as there is not 

much research available regarding the ecophysiology of dryland Eucalyptus species. 

4.5 Conclusion  

The principal aim of this study was to develop models for two durable Eucalyptus species 

by identifying the most influential site-specific factors and including them in juvenile growth 

models. This study explicitly tested a comprehensive set of site-specific edaphic and biotic 

variables for two juvenile dryland Eucalyptus species. It identified and integrated the most 

important variables into a hybrid height growth yield and survival models.  
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This study found that topographic and climatic features were the most important factors 

for juvenile plantation height growth and survival. The study findings show that E. bosistoana 

needed optimal wind shelter and available water, and E. globoidea demanded more light and 

optimal maximum temperature to grow taller at the juvenile stage. Furthermore, E. bosistoana 

survival was influenced by minimum temperature with light availability, but E. globoidea needed 

a more convex surface, along with high minimum temperature. As all the soil data was somewhat 

coarser than other data, it may worth conducting an intensive soil investigation before adding soil 

variables to any modelling framework, though in this study they were not significant.  

The models and results here for the two dryland Eucalyptus species are useful for forest 

managers to decide on species and site selection as well as silvicultural regime.  
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5. Modelling juvenile growth and survival using a hybrid ecophysiological approach.  

5.1. Introduction 

Hybrid ecophysiological components have the potential to enhance the capability of the models 

by surmounting the shortcomings of either mensurational or purely ecophysiological models 

(Landsberg, 2003; Mäkelä et al., 2000; Monserud, 2003; Weiskittel et al., 2011). Hybrid models 

simplify and combine the best features of each approach. Those features are carefully chosen based 

on their ability to explain the process, enhancing model precision and, more importantly, a drastic 

simplification of growth processes (Weiskittel, 2007; Weiskittel et al., 2011). Hybrid models have 

received less attention than strictly mensurational or ecophysiological models, but are currently a 

focus of attention from researchers as well as forest managers (Mason et al., 2018). This results 

from a combination of increasing awareness of both natural and anthropogenic changes in climate, 

and advancement in precise and automated data collection. Hybrid models typically operate at the 

stand level and on a monthly time step, although a few runs at the individual tree level and on a 

daily time step (Weiskittel, 2007). 

 Weiskittel et al. (2011) classified hybrid modelling frameworks into two classes: 1) linked 

mensurational equations with external or internal ecophysiological growth modifiers or submodels 

(Almeida et al., 2004; Battaglia et al., 2004; Peng et al., 2002), and 2) theoretical assumption based 

equations of ecophysiological processes (Mason et al., 2011; Pinkard & Battaglia, 2001; Snowdon 

et al., 1999). The degree of hybridisation varies within each class, so it is hard to define a clear 

line for each approach (Weiskittel et al., 2011). Monteith (1977) observed a linear relationship 

between productivity and absorbed photosynthetically active radiation (APAR), which slope is a 

term known as radiation or light use efficiency (RUE/LUE), which is widely used, with differing 

levels of refinement, in hybrid modelling.  
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 The 3-PG (Physiological Principles for Predicting Growth) model (Landsberg and Waring 

(1997), is widely used for predicting productivity around the world. It explicitly considers the LUE 

principle for forests by estimating the use of intercepted photosynthetically active radiation 

modified by available soil water (ASW), vapour pressure deficit (VPD), air temperature and soil 

fertility. The 3-PG model can be expressed as (Mason et al., 2007): 

NPP = ε∑ APARmmin{fθfD}fTfS
M
m=1                   (24) 

where m is the time interval (months), APAR is the absorbed photosynthetically active radiation, 

ε is the maximum quantum efficiency for a species, fθ is the soil water modifier (0-1), fD is the 

vapour pressure deficit modifier (0-1), fT is the air temperature modifier (0-1), and fS is the 

senescence modifier (0-1). However, it has some limitations from the mensurational perspective 

of a growth and yield model. The 3-PG model is not path invariant (Clutter, 1963; Clutter et al., 

1983) and it can be calibrated for a single dataset in a variety of ways by changing one or more of 

a large number of modelling parameters. Moreover, the 3-PG model is highly recursive so that 

errors can be propagated over prediction time (Mason et al., 2007). 

 Potentially usable light sum equations (PULSE) represent a hybrid modelling approach 

proposed by Mason et al. (2007), which combines the LUE principle with mensurational models 

to overcome the shortcomings of 3-PG. Also, it gives more plausibility from both the 

ecophysiological and mensurational perspectives of growth modelling. The LUE components of 

this model are formulated following modified 3-PG methods, and the mensurational growth 

equations complement the base growth equations. More simply, potentially usable light sum 

(PULS) approaches replace time in mensurational models with intercepted accumulations of 

radiation over given periods. The accumulated radiation sum over the period can be restricted by 
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3-PG modifiers. The PULSE model suggests that potentially useable radiation can be represented 

as 

RT = ∑ Rtmin(fθfD)fT
T
i=1                                                                                                           (25) 

where RT is the total radiation sum from month 1 to T(MJ), and fθ, fD, and fT are the soil water 

balance, vapour pressure deficit (VPD), and temperature modifiers calculated for month tm. 

 The PULSE modelling approach was first applied in a controlled experiment on a juvenile 

Pseudotsuga menziesii plantation near Portland, Oregon in the United States to model ground line 

diameter (GLD), and it proved to be stable in all cases, suggesting that environmental changes 

were explained by the modifiers (Mason et al., 2007). Since then it has been tested for mature 

Pinus radiata in New Zealand (Mason et al., 2011), Pinus taeda and Eucalyptus grandis in 

Uruguay (Casnati, 2016), and a site index (SI) model of Pinus sylvestris in Sweden (Mason et al., 

2018). A similar approach was applied by Montes (2012) to model height increments, basal area 

and mortality as a function of APAR, using a state-space approach (Garcia, 1984). Interestingly, 

after its early development, the PULSE modelling approach had not been re-tested for juvenile 

growth. Therefore, there were grounds to test this approach, especially to model height yield and 

survival, in order to make the PULSE modelling approach more compatible with the establishment 

phase of a plantation.  

Stand nutrition is an important regulator of NPP, yet current understanding seems 

insufficient to bring it into a modelling framework (Landsberg & Waring, 1997). Hence, this is 

another limitation of 3-PG (Bown et al., 2013; Landsberg, 2003), which also has been a limitation 

for the PULSE modelling approach (Casnati, 2016). Moreover, radiation interception and tree 

growth can be modulated by the topography (Böhner & Antonić, 2009; Gerlitz et al., 2015), but 

relevant modifiers have not yet been presented in 3-PG or PULSE. Casnati (2016) resolved this 
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problem by augmenting aspect and slope directly into the equation as a linear expansion of the 

coefficients, an approach which merits further exploration. 

So far, the results of applying the PULSE model seems promising with respect to precision 

and outputs for predicting tree growth. Nevertheless, open questions remain, especially in PULSE 

for modelling juvenile growth and survival, along with the influence of different topographic 

metrics.  

The main questions addressed in this chapter are, 

1. How much does the PULSE model contribute to explaining variability in juvenile 

growth of Eucalyptus bosistoana and Eucalyptus globoidea? 

2. Can models be improved by adding topographic indices? 

In this chapter, PULSE equations were adjusted at the site level for E. bosistoana and E. globoidea, 

to model height yield and survival. Detailed topographic information was also tested for its 

potential to improve estimations, and hence be included in the hybrid modelling system.        

5.2. Methods 

To develop the models, modified light sums were computed through PULSE models, then 

height yield (hT) and survival proportion (S) were fitted directly as a function of the modified light 

sums. The detailed modelling procedure is presented below. 

5.2.1 Data description 

Geo-referenced NZDFI permanent sample plot (PSP) measurements were used to model 

height yield (hT) and survival proportion (S). For computing, the radiation sums and the modifiers, 

monthly solar radiation, mean air temperature, vapour pressure deficit (VPD), and rainfall were 

downloaded from the virtual climatic station network (VCSN) dataset (NIWA, 2015). Location of 
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the closest VCSN points showed in Chapter 4 (Figure 4.1). Soil water balance was computed based 

on soil texture, potential rooting depth, available soil water (ASW), potentially available soil water 

(SWPA), with data sourced through the fundamental soil layers (FSL) (Land Resource Information 

System, 2015). All the data used here are described in detail in Chapter 4. 

5.2.2 Calculation of modifiers 

The modifier applicable to vapour pressure deficit (VPD) describes a relationship where 

the modifier declines exponentially when VPD increases. It is computed as follows (Landsberg & 

Waring, 1997): 

fD = e−kgVPD                                                                                                                          (29) 

where kg is a coefficient based on the relationship between stomatal conductance and VPD. In 

addition, VPD is calculated as follows: 

VPD =
DTmax−DTmin

2
                                                                                                                 (30) 

where DTmax and DTmin represent saturated vapour pressure when temperature = Tmax and Tmin. 

Those variables are calculated using minimum or maximum temperatures each month (Ti) using 

the equation: 

DTi = 0.61078e17.269Ti/(Ti+237.3)                                                                                           (31) 

The soil water-dependent modifier was calculated as follows (Landsberg & Waring, 1997): 

fθ =
1

1+[
(1+rθ)

Cθ
]nθ

                                                                                                                           (32) 

where Cθ and nθ take different values for different soil types and rθ is the moisture ratio, calculated 

as follows: 

rθ =
θT

SWPA
                                                                                                                                 (31) 
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θT is the soil water balance, and SWPA is the soil water potentially available. SWPA information 

was obtained from the FSL layers (Chapter 4, Soil data). 

Soil water balance was estimated through the following equation: 

θT = θT−1 + R − I − E − D                                                                                                       (32) 

where θT−1 is the root zone water balance in the previous month; R is rainfall; I is canopy 

interception; E is evapotranspiration from the soil and D is soil drainage. When, θT−1+P-I-

E>SWPA, it confirms the existence of excess water. Although in this case, it is assumed to be 

drained. 

The 3-PG model estimates evapotranspiration using the Penman-Monteith “big-leaf” model 

(Monteith, 1981): 

λE =
SRn+λgbρaVPD

S+γ(1+
gb
gc
)

                                                                                                                    (33) 

where λ is the latent heat of water vaporisation (JKg); S is the slope of saturation vapour pressure 

curve for water (kPa℃-1); Rn is net radiation absorbed by the canopy (Jm-2month-1); ρa is air 

density (kg m-3); VPD is vapour pressure deficit (mbar); γ is the psychometric parameter  

(kPa℃-1); gb is boundary layer conductance (ms-1); and gc is canopy conductance (ms-1). The 

values used are given in Table 5.1. 

Boundary layer conductance depends on wind speed as well as size and shape of leaves, 

and density of foliage (Landsberg & Sands, 2011). However fixed values are commonly used for 

practical purposes, and a fixed value of 0.2 ms-1 was assumed by following the work of Mielke et 

al. (1999). Mielke et al. (1999) also found wind speeds around 2 ms-1 leading to canopy 

conductance values of 0.2 ms-1 for E. grandis. According to Martin et al. (1999), boundary layer 

conductance did not increase markedly when wind velocity ranged from 1 to 2 ms-1. Therefore, it 
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was assumed that wind speed was spatially and temporally uniform, and boundary layer 

conductance values assumed in this study did not seem to lead to significant error. The specific 

values are presented in Table 5.1. 

 Canopy conductance was calculated as follows: 

 gcx = gsxmin {1,
L

Lgc
}min{fθ, fD}                                                                                      (34) 

where 𝑔𝑐𝑥 is maximum stomatal conductance, assumed as 0.02 ms-1 (Almeida et al., 2004; Sands, 

2004). L is leaf area index (LAI), LgC is leaf area index at maximum conductance, and other terms 

are as specified before. LAI was required for both trees and competing vegetation in each month 

to run the water balance, but no measured data were available. Consequently, generic exponential 

LAI models were built for juvenile trees and competing vegetation (e.g. weeds) at monthly time 

steps by following Dodd et al. (2005) and Mason (In Prep.), by assuming that individual competing 

vegetation would reach maximum LAI values similar to those reported in Breuer et al. (2003). 

Once tree canopy cover established properly, the tree LAI gets stable so grass LAI has little or no 

impact on the water balance model (Mason, In Prep). The plantation sites were initially sprayed 

with herbicide so, both trees and weeds were assumed to start with a LAI value of 0 (Figure 5.1). 

The models are as follows: 

LAIp = e

(1.5−
2

(
K
12

)
1.5)

+ 0.1                                                                                                       (35) 

LAIg = e

(1−
1.5

(
K
12

)
3.5)

                                                                                                                 (36) 

where LAIp is tree LAI, and LAIg is weed LAI; K stands for the month. Weighted means of juvenile 

trees and competing vegetation (L) were used in the final water balance model. 
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Figure 5.1 Generic leaf area index (LAI) estimation models. 

 Net radiation was estimated using a linear relationship with radiation as follows: 

Rn = qa + qbHs                                                                                                                   (37) 

where qa (Wm-2) and qb are the intercept and the slope parameters. The values applied were the 

ones used in 3-PG by Sands (2004). 

The temperature dependent growth modifier is based on the assumption that production 

increases with increasing temperature and starts declining after an optimum is reached (Mason et 

al., 2007): 

fT(T̅) = (
T̅−Tmin

Topt−Tmin
) (

Tmax−T̅

Tmax−Topt
)

(Tmax−Topt)

(Topt−Tmin)
                                                                                    (38) 

where fT = 0 if T̅ ≤ Tmin or Tmax ≤ T̅; Tmax , Tmin and Topt are the maximum, minimum and 

optimum temperatures for net photosynthetic production; and T̅ is the mean temperature for each 
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month. In this case, the mean daytime temperature was employed instead of mean temperature 

because Mason et al. (2011) found that this modification gave better precision than daily mean 

temperature. The mean daytime temperature defined in Mason et al. (2011) by: 

T̅ = ∆Tmax0.7575 + ∆Tmin0.2425                                                                                            (39) 

where T̅ is mean daytime temperature; ∆Tmax is mean daily maximum temperature; and ∆Tmin is 

mean daily minimum temperature. 

 Competition for light was estimated using the ratio of squares for competing vegetation 

and crop mean heights multiplied by the percentage cover of competing vegetation as a 

competition index, and the following equations were used to estimate light transmission to crop 

plants (Richardson et al., 1999): 

CI =
Hweeds

2

Hcrop
2 C                                                                                                                          (40) 

fCI = 1 − (1 − eM1×CI)M2                                                                                                       (41) 

where fCI is the light competition modifier, CI is the competition index, H is the height of 

competing vegetation or crops as noted, C is the percentage cover of competing vegetation, and 

M1 and M2 are parameters estimated in competition experiments (Richardson et al., 1999), with 

values given in Table 5.1. 
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Table 5.1 List of parameters used in PULSE. 

Modifier Parameter Unit Value Reference 

Water balance Maximum stomatal conductance of 

trees 

ms-1 0.02 (Coops & Waring, 2001) 

 Maximum stomatal conductance of 

weeds 

ms-1 0.02 (Mason et al., 2007) 

 LAI for maximum canopy conductance  3.33 (Sands, 2004) 

 Boundary layer conductance of trees ms-1 0.2 (Landsberg & Waring, 

1997) 

 Boundary layer conductance of weeds ms-1 0.25 (Mason et al., 2007) 

 Intercept of net radiation relation for 

trees 

Wm-2 -90 (Sands, 2004) 

 Slope of net radiation relation for trees  0.8 (Sands, 2004) 

 Intercept of net radiation relation for 

weeds 

Wm-2 -90 (Sands, 2004) 

 Slope of net radiation relation for weeds  0.65 (McNaughton & Jarvis, 

1983) 

 LAI for maximum rainfall interception mm 4 (Mason et al., 2007) 

 Latent heat of water vaporisation J Kg 2 460 000 (Casnati, 2016) 

 Air density Kgm-3 1.2  

Temperature Maximum temperature for 

photosynthesis 

℃ 45 (Oparah, 2012) 

 Optimum temperature for 

photosynthesis 

℃ 18 (Oparah, 2012) 

 Minimum temperature for 

photosynthesis 

℃ 6 (Oparah, 2012) 

VPD Exponential decay parameter  -0.5 (Landsberg & Waring, 

1997) 

Light 

competition 

M1  -0.760 (Richardson et al., 1999) 

 M2  1.289 (Richardson et al., 1999) 
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5.2.3 Model building and evaluation 

 Accumulated radiation for each month was multiplied by a different combination of 

modifiers for temperature, water balance, and VPD. Each month was summed up from planting 

date to measurement date. An example including all the modifiers is as follows: 

RM = ∑ Rmmin[fθfD]fTfCI
M
m=1                                                                                                   (42) 

where Rm is the radiation in month m, RM is the potentially useable light sum, fCI is the light 

competition modifier, and the other variables are as previously defined. This model blends the key 

submodels with commonly used mensurational equations, which avoids the need to estimate 

APAR directly, does not require estimates of carbon allocation, and can be both fitted and used 

without recursion (Mason et al., 2007). 

 The PULSE equation was used in combination with the previously defined height yield 

and survival proportion model (Chapter 3), by replacing the time with radiation sum. The equations 

can be represented as follows: 

hM = h0 + αRM
β                                                                                                                   (43) 

SM = −eαRM
β
                                                                                                                            (44) 

where hM  is the height at month M, SM is the survival at month M, and α and β are the modelling 

parameters previously defined in  Chapter 3.  

 To build the final model a two-step procedure was applied. First, height and survival 

equations were fitted with PULS restricted different modifiers through PULSE model. That means 

radiation sum for the study period was calculated by applying different modifiers separately for 

the study period. Therefore, potentially usable light was calculated by applying all modifiers (RM), 

temperature (RT), temperature with ASW (RTθ), and temperature with VPD (RTVPD). The best-
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fitted PULSE model was identified through a full set of residual analyses. Second, testing was 

undertaken of the best-fitted PULSE model by augmenting it with secondary topographic 

variables, as described in Chapters 3 and 4, and comparing it with the version without topographic 

variables.  

 The PULSE modelling and PULS calculations were carried out in an R workspace (R Core 

Team, 2017), through object-oriented programming developed and provided by Prof. Euan G. 

Mason (Casnati, 2016; Mason et al., 2018; Mason et al., 2011), which was used previously  for 

similar kinds of modelling experiments. 

The model evaluation was carried out by following the procedures described in Chapter 4. 

The model evaluation and comparison for height yield and survival were performed only for the 

best PULSE model and the improved augmented PULSE model.   

5.3. Results 

5.3.1. Site-specific height yield PULSE models 

 The PULSE calculated radiation sum replaced the time from the base mensurational model, 

and among all four types of modified PULSE models, temperature and VPD restricted radiation 

sum (RTVPD) calculation gave the best prediction of the height yield for both E. bosistoana and E. 

globoidea (Equation 44 and 45). Model statistics are described in Table 5.2, and shown in Figure 

5.2, Figure 5.3, Figure 5.4, and Figure 5.5, where the distribution and model fitting trends can be 

seen. All indications are that the model with RTVPD gave the best fit. In the case of E. bosistoana, 

radiation sum modified only by temperature (RT) was also statistically sound, with a very slight 

improvement over the RTθ (Table 5.2). However, results were different for E. globoidea. The PULS 

restricted by all modifiers (RM) and the PULS with available soil water (RTθ) were the worst 

performers (Figure 5.2 and Figure 5.3). The validation statistics showed reasonable values in the 
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given situation. RMSE, MAE, SE increased somewhat in comparison to fitting statistics, but AICc 

values reversed (Table 5.3). Visually, plot validation statistics (Figure 5.6) confirmed 

improvement in goodness-of-fit of the models.  

hEBM = h0 + αRTVPD
β                                                                                                             (45) 

hEGM = h0 + αRTVPD
β                                                                                                           (46) 

where hEBM and hEGM are the height of E. bosistoana and E. globoidea respectively at month M; 

α and β are the parameters; the others have been defined previously. 
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Figure 5.2 Residuals against predicted of E. bosistoana PULSE height yield models (blue line 

indicating the loess fit), with A) All modifiers (RM); B) temperature (RT); C) temperature and 

vapour pressure deficit (RTVPD); D) available soil water (RTθ) modified radiation sum. 
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Figure 5.3 Residuals against predicted of E. globoidea PULSE height yield models (blue line 

indicating the loess fit), with A) All modifiers (RM); B) temperature (RT); C) temperature and 

vapour pressure deficit (RTVPD); D) available soil water (RTθ) modified radiation sum. 
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Table 5.2 Fitting statistics for PULSE height yield models. 

Fitting Metrics 
PULSE models with different modifiers 

Species 
RM RT RTVPD RTθ 

RMSE 1.143 0.932 0.965 1.152 

E
. b

o
sisto

a
n
a

 

MAE 0.891 0.733 0.752 0.901 

BIAS -0.0339 -0.018 -0.020 -0.033 

SE 1.153 0.940 0.974 1.162 

AICc 375.64 327.16 335.54 377.63 

R2 adj. 0.321 0.579 0.544 0.310 

RMSE 1.128 0.99 0.965 1.152 

E
. g

lo
b
o
id

ea
 

MAE 0.902 0.778 0.752 0.901 

BIAS -0.031 -0.022 -0.020 -0.033 

SE 1.139 1.009 0.974 1.162 

AICc 341.791 315.314 335.542 377.630 

R2 adj. 0.474 0.602 0.544 0.310 

 

Table 5.3 Validation statistics for the best PULSE height yield models. 

Species 
Validation statistics of  RTVPD 

RMSE MAE SE BIAS AICc MPRESS MAPRESS 

E. bosistoana  1.414 1.056 2.065 0.005 327.388 -0.0212 0.532 

E. globoidea 1.625 1.216 2.692 0.006 311.336 -0.0212 0.532 



 

206 
 

 

 
Figure 5.4 Residuals distribution of E. bosistoana PULSE height yield models (red dashed line 

shows the mean), A) All modifiers (RM); B) temperature (RT); C) temperature and vapour 

pressure deficit (RTVPD); D) available soil water (RTθ) modified radiation sum. 
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Figure 5.5 Residuals distribution of E. globoidea PULSE height yield models (red dashed line 

showed the mean), A) All modifiers (RM); B) temperature (RT); C) temperature and vapour 

pressure deficit (RTVPD); D) available soil water (RTθ) modified radiation sum. 
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Figure 5.6 Residuals distribution from the model validation, A) predicted against residuals 

distribution with loess fit line in blue and B) frequency distribution (red dashed line showing 

the mean. A1 and B1 for E. bosistoana; A2 and B2 for E. globoidea. 

5.3.2 Augmented PULSE model for juvenile height yield  

The temperature and VPD modified PULSE model was augmented with secondary 

topographic variables by linearly expanding the coefficients. A set of variables (Table 5.4) and 

their interaction terms were augmented, and only statistically significant variables were 

retained in the final models. For E. bosistoana, the morphometric protection index (MPI) and 

wind exposure index (WEI) were the most significant variables. Only the MPI was significant 

for E. globoidea (Equation 46 and 47). 
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Table 5.4 Augmented variables and their significant status. 

Species Variables Sig. Codes 

E
. 

b
o

si
st

o
a

n
a
 

Topographic position index (TPI) NS 

Topographic wetness index (TWI) NS 

Morphometric protection index (MPI) *** 

Wind exposure index (WEI) *** 

Profile curvature NS 

Plan curvature NS 

E
. 

g
lo

b
o
id

ea
 

Topographic position index (TPI) NS 

Topographic wetness index (TWI) NS 

Morphometric protection index (MPI) *** 

Wind exposure index (WEI) NS 

Profile curvature NS 

Plan curvature NS 

    Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘-’; NS ‘Not Significant’ 

 

hEBM = h0 + αRTVPD
(β0+β1∗MPI+β2∗WEI)                                                                                                    (47) 

hEGM = h0 + αRTVPD
(β0+β1∗MPI)                                                                                                           (48) 

where hEBM and hEGM are the height of E. bosistoana and E. globoidea respectively at month 

M; α, β0, β1 and β2  are parameters; MPI is the morphometric protection index, and WEI is  

the wind exposure index; the others have been defined previously. 

 Both models (Equations 46 and 47) predicted height with minimal errors, and the errors 

were normally distributed. The loess line showed the model fit which was reliable in both cases. 

The fit statistics of the models showed relatively small values, which were desirable 

characteristics. For both species, the RMSE, MAE and SE increased in validation statistics 

compared to the fit statistics. BIAS and AICc were reversed from fit to validation statistics 

(Table 5.5). However, visual comparison suggested that model performance was slightly 

lowered and there was evidence of positive heteroscedasticity (Figure 5.9). 

 Including topographic features in the height yield models proved statistically 

significant. The E. bosistoana height yield PULSE model was significantly influenced by the 
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morphometric protection index (MPI) and the wind exposure index (WEI). Height increased 

with increasing MPI, whereas height decreased with increasing WEI. The height yield PULSE 

model of E. globoidea was influenced by MPI alone in the same manner as for E. bosistoana 

(Figure 5.7 and Figure 5.8).  

 

Figure 5.7 Augmented PULSE height model for E. bosistoana residuals: A) residuals against 

predicted plot, the blue line indicating the loess fit; B) residuals distribution; C) morphometric 

protection index (MPI) effect; and D) wind exposure index (WEI) effect. 

 



 

211 
 

 

Figure 5.8 Augmented PULSE height model for E. globoidea residuals: A) residuals against 

predicted plot, the blue line indicating the loess fit; B) residuals distribution; C) Morphometric 

protection index (MPI) effect. 
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Figure 5.9 Residuals distribution from augmented models validation: A) predicted against 

residuals distribution with the loess fit line in blue and B) frequency distribution (red dashed 

showing the mean line). A1 and B1 for E. bosistoana; A2 and B2 for E. globoidea. 
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Table 5.5 Fitting and validation statistics for augmented PULSE height yield models. 

Species 
 Fitting and validation statistics of  augmented RTVPD 

 RMSE MAE SE BIAS R2 adj. AICc MPRESS MAPRESS 

E. bosistoana Fitting 0.8464 0.691 0.861 -0.032 0.623 308.3902 - - 

Validation 1.330 1.019 1.857 -0.010 - 301.461 -0.041 0.600 

E. globoidea Fitting 0.971 0.771 0.985 -0.030 0.609 311.256 - - 

Validation 1.586 1.187 2.575 -0.002 - 304.330 -0.034 0.593 

 

 



 

214 
 

5.3.3 Site-specific survival PULSE model 

Similarly to the height model, PULSE also performed well for survival proportion. 

Quantitatively, RT and RTASW showed the best results (Table 5.6) but, when combining the 

visual and statistical analyses, RTVPD was the most satisfactory one. RTVPD had very low 

distortion of residuals against predicted values, as well as being distributed more normally than 

other models (Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13). Therefore, temperature 

and VPD modified PULS were included in the final modelling framework for both species. 

The final models are as follows (Equations 49 and 50):   

SEBM = −eαR𝑇𝑉𝑃𝐷
β
                                                                                                                            (49) 

SEGM = −eαRTVPD
β
                                                                                                                            (50) 

where SEBM and SEGM are, respectively, E. bosistoana and E. globoidea survival proportions at 

month M and α and β are the modelling parameters. 

 Moreover, the validation analyses confirmed the models’ performance and goodness-

of-fit, but with less precision in comparison to the fitting statistics. From the validation statistics 

(Table 5.7) it can be seen that models performed with little or no distortion in comparison to 

the model fit. Residual fitting values increased by a negligible amount, which is also apparent 

in the plots (Figure 5.14).  
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Figure 5.10 Residuals against predicted survival proportion of E. bosistoana PULSE survival 

proportion models (blue line indicating the loess fit): with A) all modifiers (RM); and PULS 

modified by B) temperature (RT); C) temperature and vapour pressure deficit (RTVPD); and D) 

available soil water (RTθ). 
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Figure 5.11 Residuals against predicted survival proportion of E. globoidea PULSE survival 

proportion models (blue line indicating the loess fit) and PULS modified by A) all modifiers 

(RM); B) temperature (RT); C) temperature and vapour pressure deficit (RTVPD); D) available 

soil water (RTθ). 
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Figure 5.12 Residual distributions of E. bosistoana PULSE survival proportion models (red 

dashed line showing the mean), and PULS modified by A) all modifiers (RM); B) temperature 

(RT); C) temperature and vapour pressure deficit (RTVPD); D) available soil water (RTθ) 

modified radiation sum. 
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Figure 5.13 Residuals distribution of E. globoidea PULSE survival proportion models (red 

dashed line showing the mean), and PULS modified by A) all modifiers (RM); B) temperature 

(RT); C) temperature and vapour pressure deficit (RTVPD); D) available soil water (RTθ) 

modified radiation sum. 
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Table 5.6 Fitting statistics for the PULSE survival proportion models. 

Fitting 

Metric 

PULSE models with different modifiers 
Species 

RM RT RTVPD RTθ 

RMSE 0.110 0.114 0.114 0.110 

E
. b

o
sisto

a
n
a

 

MAE 0.069 0.072 0.072 0.069 

BIAS 0.0003 0.002 0.002 -1.299 

SE 0.111 0.115 0.114 0.111 

AICc -244.082 -233.757 -234.237 -245.426 

R2 adj. 0.266 0.182 0.184 0.278 

RMSE 0.205 0.207 0.207 0.205 

E
. g

lo
b
o
id

ea
 

MAE 0.157 0.161 0.161 0.156 

BIAS 0.006 0.007 0.007 0.006 

SE 0.207 0.208 0.209 0.206 

AICc -42.689 -40.050 -39.875 -43.314 

R2 adj. 0.214 0.196 0.194 0.221 

 

Table 5.7 Validation statistics for the best PULSE survival proportion models. 

Species 
Validation statistics of  RTVPD 

RMSE MAE SE BIAS AICc MPRESS MAPRESS 

E. bosistoana  0.127 0.082 0.016 0.001 -229.248 0.002 0.164 

E. globoidea 0.233 0.185 0.054 0.006 -38.641 0.007 0.177 
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Figure 5.14 Residuals distribution for validation of survival proportion models: A) predicted 

against residuals distribution with the loess fit line in blue, and B) frequency distribution (red 

dashed line showing the mean). A1 and B1 for E. bosistoana; A2 and B2 for E. globoidea. 

5.3.4 Augmented PULSE model for juvenile survival proportion 

 A list of uncorrelated secondary topographic variables (Table 5.8) and their interaction 

terms were considered to augment the best PULSE model for survival found previously. 

However, the statistical significance of the various combinations showed that only the 

topographic wetness index (TWI) for E. bosistoana and the wind exposure index (WEI) for E. 

globoidea merited inclusion. Likewise, for height yield models, in both cases topographic 

features were significant with the β parameter of the models. The equations are as follows: 
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SEBM = −eαR𝑇𝑉𝑃𝐷
(β0+β1∗𝑇𝑊𝐼)

                                                                                                                            (51) 

SEGM = −eαRTVPD
(β0+β1∗𝑊𝐸𝐼)

                                                                                                                            (52) 

where TWI is the topographic wetness index and WEI is the wind exposure index, and all 

others as described in earlier sections. 

Table 5.8 Augmented variables and their significance status. 

Species Variables Sig. Codes 

E
. 

b
o

si
st

o
a

n
a
 

Topographic position index (TPI) NS 

Topographic wetness index (TWI) *** 

Morphometric protection index (MPI) NS 

Wind exposure index (WEI) NS 

Profile curvature NS 

Plan curvature NS 

E
. 

g
lo

b
o
id

ea
 

Topographic position index (TPI) NS 

Topographic wetness index (TWI) NS 

Morphometric protection index (MPI) NS 

Wind exposure index (WEI) *** 

Profile curvature NS 

Plan curvature NS 

    Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘-’; NS ‘Not Significant’ 

 Both of the augmented survival proportion models (Equations 51 and 52) performed 

with minimal error and visual distortion. In the frequency distribution plots of residuals, a few 

extreme outliers can be found, but other than those, the models fit within satisfactory ranges 

(Figure 5.15 and Figure 5.16). The E. globoidea model showed an abnormality in the residual 

against the predicted survival proportion plot (Figure 5.16 (A)). The model validation statistics 

and figures showed relatively small BIAS and other goodness-of-fit properties (Figure 5.17), 

though all of them increased during validation (Table 5.9).  

 The E. bosistoana survival proportion PULSE model was significantly influenced by 

the TWI, which indicates the wetness status of a certain location. The models showed that with 

increased wetness the survival proportion decreased. In the case of E. globoidea, WEI showed 
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a similar pattern. WEI indicates the wind load of a certain location. It showed that, with 

increased WEI, the E. globoidea survival proportion decreased (Figure 5.15 and Figure 

5.16,(C)).    

 

 

Figure 5.15 Augmented PULSE survival proportion model for E. bosistoana: A) residuals 

against predicted plot, the blue line indicating the loess fit; B) residuals distribution (red dashed 

line indicating the mean); C) topographic wetness index (TWI) effect. 
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Figure 5.16 Augmented PULSE survival proportion model for E. globoidea: A) residuals 

against predicted plot, blue line indicating the loess fit; B) residuals distribution (red dashed 

line indicating the mean); C) wind exposure index (WEI) effect. 
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Figure 5.17 Residuals distribution from augmented survival proportion model validation: A) 

predicted against residuals distribution with the loess fit line (blue line) and B) frequency 

distribution (red dashed line shows the mean). A1 and B1 for E. bosistoana; A2 and B2 for E. 

globoidea. 
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Table 5.9 Fitting and validation statistics for augmented survival proportion PULSE models. 

Species 
 Fitting and validation statistics of augmented RTVPD 

 RMSE MAE SE BIAS R2 adj. AICc MPRESS MAPRESS 

E. bosistoana Fitting 0.108 0.066 0.109 0.001 0.282 -249.573 - - 

Validation 0.133 0.086 0.017 0.0003 - -242.218 0.001 0.246 

E. globoidea Fitting 0.204 0.158 0.206 0.007 0.213 -42.076 - - 

Validation 0.231 0.183 0.053 0.006 - -40.8076 0.008 0.188 
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5.4 Discussion 

Traditional growth and yield models are highly abstract and geographically local. They 

are likely to be unstable with changes, for example, climate change and change in management 

regime (Kimmins et al., 2008). These may need to be addressed, either by examining the 

underlying process, or by avoiding the model complexity. Moreover, models should follow the 

basic assumptions of traditional growth and yield modelling (Burkhart & Tomé, 2012; 

Weiskittel et al., 2011). In this study, an ecophysiological hybrid modelling system (PULSE) 

has been successfully implemented to predict height yield and survival at the site-specific level 

for juvenile E. bosistoana and E. globoidea. This framework was first implemented for juvenile 

Pinus taeda ground level diameter (GLD) growth (Mason et al., 2007). Since then it has not 

been tested on any juvenile forest. Adding topographic features gave extra explanatory power 

and gave more precision to both the height yield and the survival proportion models.  

5.4.1 Juvenile PULSE models  

This study included different approaches to cumulative radiation for modelling the 

height yield and survival proportion, which gave an insight into key growth variables. Models 

with different modifiers performed well with little residual distortion and desirable statistical 

properties. All the models were relatively stable with regard to temperature, and the VPD 

modified radiation sum (RTVPD). Casnati (2016) reported that PULS performed best with 

multiple modifiers for stand dynamics of Pinus taeda and Eucalyptus grandis in Uruguay, and 

that temperature-only modified PULS performed worst. In contrast, Mason et al. (2018) found 

potentially usable radiation sum was best modified by temperature alone for site index (SI) of 

Pinus sylvestris in Sweden. Both studies were on mature stand growth, whereas this study was 

carried out on juvenile stands. As the application of PULSE is very much dependent on the 

input data, with more precise measurements the models presented would likely have included 

other modifiers. For instance, in this study, the LAI for trees and competing vegetation were 
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modelled without any site-specific data. Moreover, the information provided by the 

fundamental soil layers was coarse and potentially erroneous (Pearse et al., 2015). As these 

two inputs were critical for making the water balance model for PULSE, it is possible that the 

resultant water balance model was not sufficiently precise to be significant in the final 

modelling step.  

Eucalyptus are highly sensitive to temperature (Bell & Williams, 1997) and 

atmospheric humidity (Battaglia & Sands, 1998), with both influencing growth and survival. 

The results of this study support these same findings. Besides, these results were consistent 

with Chapters 3 and 4. Also, Eucalyptus species are well known to be water demanding (Bell 

& Williams, 1997). That aside, there is very little published information about ecophysiological 

behaviour of E. bosistoana and E. globoidea.      

In all models, errors increased at the validation step. The survival proportion model had 

lower validation errors: better initial data of newly planted stock may explain this and reduce 

the errors (Mason et al., 2007; Mason & Whyte, 1997). In this study, no tree measurements 

immediately after planting were available. For example, initial seedling height, site preparation 

and weeding treatments were unknown, which may have influenced final modelling outcomes.   

5.4.2 Topographic variables 

 As the radiation sums used by PULSE were calculated for a flat surface, it is important 

to modify the models to account for topography. Coops et al. (2000) reported differences in 

incoming radiation for a variety of slopes and orientations, which are therefore important when 

estimating incoming radiation as input for hybrid forest growth and yield models. Berg et al. 

(2017) explained topographic wetness in relation to seasonality, and Fremme and Sodemann 

(2018) reported wind effects on soil moisture. Casnati (2016) also recommended the inclusion 

of topography as it played an important role in the PULSE model precision and explanatory 
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power. The topographic features used in the final models, MPI, WEI and TWI, may potentially 

influence the radiation sum.     

 Juvenile E. bosistoana height was influenced by the morphometric protection index 

(MPI) and the wind exposure index (WEI), and E. globoidea height was influenced by MPI 

alone – in line with previous findings in this thesis. Wind actively influences the tree 

architecture (Brüchert & Gardiner, 2006) and seedlings are more conservative with resources 

than mature trees, especially in arid regions (Mediavilla & Escudero, 2004).  

 The survival of E. bosistoana was influenced by the topographic wetness index (TWI), 

whereas WEI influenced E. globoidea survival. Interestingly, increasing TWI negatively 

affected E. bosistoana survival. Possibly this dryland species is adversely affected by high soil 

moisture, or the trend may be caused by winter frosts (Paton, 1981), which presumably appear 

in cool-air affecting areas that also correlate with high TWI values. For E. globoidea, the 

relationship may be due to the wind influence on evapotranspiration, which is also associated 

with moisture circulation (Fremme & Sodemann, 2018).  

5.5 Conclusion  

The results presented in this study suggest that PULSE can be used to predict height 

yield and survival of juvenile E. bosistoana and E. globoidea plantations, and can be a basis of 

forecasting systems. This study explicitly explored a set of different alternatives to estimate the 

potentially usable radiation sum. Better initial plantation data (e.g., competing vegetation 

information, initial measurement) will increase the model precision.  

Including topographic features into the system not only improved the model precision 

and bias but also gave some indications on the ecophysiological behaviour of the studied 

species. The models and results presented here for the two dryland Eucalyptus species will give 

useful information to forest managers for establishing new plantations. In particular, their 

ecophysiological nature of growth with regards to different factors. This study has also 
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demonstrated that PULS techniques can avoid the complexity of traditional models while 

obtaining better predictions of tree performance.  
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6. Comparison of hybrid ecophysiological modelling approaches between sites.  

6.1 Introduction 

Several different hybrid modelling approaches have been reported in the literature for both 

juvenile (Mátyás et al., 2009; Peng et al., 2002; Rauscher et al., 1990) and mature stands 

(Landsberg & Sands, 2011; Mason et al., 2018; Snowdon et al., 1999). In addition, the 

advantages of hybrid modelling and its opportunities to aid sustainable forest management have 

been discussed (Kimmins et al., 1996; Monserud, 2003; Weiskittel et al., 2011). In contrast to 

these studies, different hybrid ecophysiological approaches have rarely been compared based 

on the following criteria: i) capability to embody the biological process; ii) coherence between 

model components and consistency with co-variates; iii) comprehensiveness and 

shortcomings; iv) application and risk associated to future implementation. However, examples 

are available: for instance, Pinjuv et al. (2006) quantitatively compared different hybrid 

ecophysiological models for Pinus radiata in New Zealand. Casnati (2016) performed both a 

quantitative and qualitative comparison for a range of modelling approaches, from pure 

mensurational to high-resolution hybrid ecophysiological models for Pinus taeda and 

Eucalyptus grandis in Uruguay. Interestingly, both of these studies were performed on mature 

stands, and there has been no further study of this nature to date.  

In previous chapters (Chapters 3, 4 and 5), three different hybrid modelling approaches 

were developed and tested for juvenile height and survival. They were as follows: 

i. The augmented traditional approach (TA): topographic, edaphic and climatic 

variables augmented time-based model. 

ii. The PULSE approach (PULSE): a hybrid ecophysiological model, where time was 

replaced by cumulative light sums from the time of planting, with potential radiation 

use calculated by modifiers.  
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iii. The augmented PULSE approach (PULSEA): augmented hybrid ecophysiological 

model with topographic variables. 

The aim of this chapter was to compare the three approaches with respect to their 

suitability for predicting stand dynamics and structure. This comparison was based on model 

precision and bias, capacity to use initial data in order to explain juvenile stand growth, and 

survival. The analysis was focused on understanding the effectiveness of the data used by each 

approach as well as the usefulness of the information provided by models for juvenile growth 

dynamics. The set of equations were described in Chapter 4 and 5.0  

6.2 Methodology 

The analysis was based on five basic concepts defined by Casnati (2016), namely i) use 

of data; ii) assumptions, sources of errors and variations; iii) precision and bias; iv) system 

integration, and v) data requirements. These ideas were validated through three simple steps 

that covered both quantitative and qualitative aspects of the models. Step 1 considered the 

whole between sites dataset described in Chapter 4 in order to obtain an overall picture, whereas 

Steps 2 and 3 were based only on the validation results. The steps are described below. 

Step 1: A comparison of time- versus radiation-based models was established. It was 

followed by a comparison between the input data used by each approach for each species. 

Step 2: Precision and bias of all models were compared in order to understand which 

formulation provided quality implementation. Precision was assessed through the root mean 

square error (RMSE) and bias through the mean absolute error (MAE). Both statistics were 

calculated by the methods described in Chapter 4. Moreover, residuals were plotted against 

predicted values in order to compare distribution and tendencies. 
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Step 3: This step involved discussing system integration and how well the components 

work together, as well as obtaining a deeper understanding of the consequences of using 

different approaches. 

6.3. Results and discussion 

6.3.1. Time versus radiation 

The substitution of time by modified potentially usable radiation sums (PULS) is the 

main feature of the PULSE approach. Modelling tree growth as a function of time (age) is 

traditional practice, and it is mathematically precise. This is because the traditional approach 

is free from estimation error; however, it provides less information. In particular, traditional 

approaches cannot give a clear insight into the ecophysiological process. The relationships 

between PULS and different growth indices (e.g. height and survival) are shown in Figure 

6.1and Figure 6.2.  PULS ranged from 130 to 35,000 MJm-2 for the study period. The overall 

correlation between PULS with height growth and survival was slightly greater 

(PULSE=0.776>TA=0.756) than the time-based model (Figure 6.1 and Figure 6.2). An 

additional benefit of the PULSE approach is that it can provide a better explanation of stand 

conditions (Casnati, 2016; Mason et al., 2007) in comparison with TA. It was also observed 

that with different modifiers the PULSE approach can produce better results (Figure 6.1 and 

Figure 6.2); of course, it relies on more elaborate input data. Moreover, by combining data 

related to growth, the PULSE approach allows inclusion of data that varies spatially and 

temporarily without interfering with ideal model properties, for instance, the path invariance 

property of tree growth models. 
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Figure 6.1 Relationship between height (m) with modified PULS and time (age) with 

correlation coefficients: A) all modifiers; B) temperature modifier; C) temperature and VPD 

modifiers; D) temperature and ASW modifiers; and E) age in years. 
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Figure 6.2 Relationship between survival proportion with modified PULS and time (age) with 

correlation coefficients: A) all modifiers; B) temperature modifier; C) temperature and VPD 

modifiers; D) temperature and ASW modifiers; and E) age in years. 

6.3.2 Information used  

A comparison of input data used in this study by each of the approaches is presented in 

Table 6.1. The simplest approach was PULSE, where the equations calculated the PULS from 

a few basic inputs, for example, temperature, rainfall and radiation. Next to PULSE was the 

augmented version of it with topographic variables. By contrast, the time-based approach used 

a lot more data as input. In terms of complexity and explanatory power, augmented PULSE 

was more complete and covered different aspects of growth processes. Chapters 3 and 4 

indicated that E. globoidea and E. bosistoana were influenced by different topographic 

features, soil characteristics, and climatic variables. These factors played a key role in tree 
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growth. The augmented PULSE approach represented those factors in a single simple equation, 

which fulfils basic modelling requirements, simplicity and rationality (Gunawardena, 2014). 

Moreover, Casnati (2016) came to a similar conclusion in the case of mature Pinus taeda and 

Eucalyptus grandis in Uruguay. 

All the approaches studied require the same data regarding tree characteristics; 

however, PULSE approaches need geo-referenced plot locations, digital elevation models 

(DEM) and more detailed soil data. They also need leaf area index (LAI) information for trees 

as well as the competing vegetation. All these may add complexity to the models. 

Beyond potential difficulties regarding input data required, the application of each 

methodology would depend on the goal of the users by seeking an exact answer based on “what 

if” type of analyses. It can be helpful for site preparation (Mason, 2013) or projecting future 

scenarios under climate change, as this approach offers within-year growth changes (Mason et 

al., 2011).    

Table 6.1 Data used in different modelling approaches. 

Component 
Approach 

Time-based augmented PULSE Augmented PULSE 

Height (hT) Age  

Climatic variables 

Topographic variables  

Soil variables 

LAIT 

LAIg 

Soil rooting depth  

PSP position 

Intercepted radiation 

Temperature 

Rain 

LAIT 

LAIg 

Soil rooting depth  

PSP position 

Intercepted radiation 

Temperature 

Rain 

Topographic variables 

Survival  

proportion (S) 

Age 

Climatic variables 

Topographic variables  

Soil variables 

LAIT 

LAIg 

Soil rooting depth 

PSP position 

Intercepted radiation 

Temperature 

Rain 

LAIT 

LAIg 

Soil rooting depth 

PSP position 

Intercepted radiation 

Temperature 

Rain 

Topographic variables 
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6.3.3 Precision and bias   

 The results from the various approaches differed with respect to precision and bias and 

were also species dependent (Table 6.2, Figure 6. 3 and Figure 6.4). However, they were not 

statistically different from each other. This may be due to the small dataset where repeated 

measurements happened at different times. In future, with a better structured dataset, 

comparisons of the error structures of these models would be worthwhile .    

 Statistically, height (hT) was best predicted by the augmented PULSE model for both 

species (Table 6.2). The lowest RMSE, which indicates the precision of models, was reported 

from the augmented PULSE models. This was also true for bias. However, in Figure 6. 3- B1, 

it can be shown that the PULSE model residual for E. bosistoana height was the best in terms 

of homogeneity and distribution, although the augmented PULSE model (Figure 6. 3- C1) had 

a narrower range of distribution. E. globoidea height, on the other hand, was best predicted by 

augmented PULSE, and this was confirmed statistically and graphically (Figure 6. 3- C2).  

Survival proportion (S) differed between approaches and species. For E. bosistoana 

survival proportion was statistically best predicted by the PULSE model, whereas for E. 

globoidea, survival was best predicted by the augmented time-based model (Table 6.2). This 

was also confirmed by the graphical presentation (Figure 6.4). 

 The magnitude of improvement from augmented PULSE modelling of juvenile height 

was satisfactory, in terms of precision and bias. On the other hand, survival proportion was not 

improved much by adding this extra data.  
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Table 6.2 Comparison of precision, bias and performance of the different approaches. Bold 

faces show the best values in the group. 

Species Component 

Approach 

Augmented  

time-based 

PULSE Augmented  

PULSE 

  RMSE MAE RMSE MAE RMSE MAE 

E. bosistoana Height (hT) 1.966 1.579 1.414 1.056 1.330 1.019 

Survival (S) 0.291 0.237 0.127 0.082 0.133 0.086 

E. globoidea Height (hT) 1.883 1.546 1.625 1.216 1.586 1.187 

Survival (S) 0.130 0.103 0.233 0.185 0.231 0.183 

In previous studies, height growth was not much improved by a hybrid approach 

(Mason et al., 2011; Pinjuv, 2006; Snowdon et al., 1999), whereas for this study modelled 

height was improved considerably. This may be influenced by the stand age or species. In this 

case, it was a juvenile broadleaf plantation stand, whereas all known comparative studies are 

mature conifer stands, more specifically Pinus radiata or Pinus taeda. However, a similar 

method of time-based augmentation was applied and found efficient for Pinus radiata  in New 

Zealand (Woollons et al., 1997) and Eucalyptus grandis in Uruguay (Casnati, 2016). Smaller 

gains in precision and bias between different approaches can result from several sources. 

Casnati (2016) reported that this is most likely related to asymptote modifiers. 
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Figure 6. 3 Comparison of three different height model approaches based on residual against 

predicted values: A) augmented time-based model; B) simple PULSE; and C) augmented 

PULSE. 1) E. bosistoana, and 2) E. globoidea. 

Modelling survival proportion is complex, especially for juvenile crops. This may be a 

result of several factors, which include site characteristics. In a study of a similar nature, Mason 

et al. (2007) collected detailed data about the weeds, different treatments and the nature of 

competition that trees experienced. There were no such data for this study, which may have 

limited the performance of the survival proportion model. In addition, information obtained 

about soils from the FSL layers was coarse, and Pearse et al. (2015) reported that it could be 

markedly incorrect in some places, which may affect the water balance model; hence the soil 

data was not considered to be precise enough. Mason et al. (2011) reported that establishing a 

fully modified PULSE model can be unreliable without a precise water balance model.    
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Figure 6.4 Comparison of three different survival proportion model approaches based on 

residual against predicted values: A) augmented time-based model; B) simple PULSE; and C) 

augmented PULSE. 1) E. bosistoana, and 2) E. globoidea. 

6.3.4 System integration 

 Both augmentation processes were well integrated within the system. Furthermore, 

PULSE and augmented PULSE provided extra information and explanation about growth 

processes without breaking any mensurational modelling rules. For example, these models 

were all path invariant and non-recursive. The PULSE approaches were a coherent synthesis 

of the traditional approach, but they provided more information at the same time. They also 

provided a framework for testing climate change within the system and gave an implicit 

estimation of within-year patterns, as the PULS is estimated in monthly time steps. These 

findings were in line with previous studies for both mature and juvenile plantations (Casnati, 

2016; Mason et al., 2007; Mason et al., 2018; Mason et al., 2011).  
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6.4 Conclusion  

This study explicitly compared three different hybrid modelling approaches and 

reported each of their pros and cons, based on experimented results. The augmented PULSE 

approach showed better results for height yield prediction, though it was not better than using 

time-based models for representing survival proportion.  

The precision and bias between models varied within a marginal limit. However, based 

on the given information and explanatory ability, the PULSE modelling framework stands out 

from the traditional time-based system. It was simple enough to integrate into the system, and 

it uses very basic direct input. However, those inputs need to be precise enough to obtain a 

satisfactory result, which may be a major limitation for the PULSE approach to be applied in 

the field.  Finally, all three approaches can be applied for juvenile plantation in any given site-

specific case, based on available data and management demands.   
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A preliminary growth and yield model for 

Eucalyptus globoidea plantations in New Zealand  
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7. A preliminary growth and yield model for mature Eucalyptus globoidea plantations in New 

Zealand. 

7.1 Introduction 

The New Zealand forestry industry is almost entirely (90%) based on Pinus radiata plantations 

(NZFOA, 2017). However, there are opportunities to introduce new species and overcome the 

limitations of Pinus radiata (Millen et al., 2018). Eucalyptus species are considered to be an 

alternative, including dryland Eucalyptus, which can survive in dry conditions as well as 

produce high-quality timber (Menzies, 1995). However, despite strong advocacy for alternative 

species, including Eucalyptus, the area being planted remains small (≥1%) (Maclaren, 2005; 

NZFOA, 2017). This is because growing Eucalyptus in New Zealand has, over the years, been 

challenging (Berrill & Hay, 2005; Berrill & Hay, 2006) as they have site-specific requirements 

(Bell & Williams, 1997; Williams & Woinarski, 1997), pests and diseases that affect their 

health and productivity (Lin, 2017), and the market for Eucalyptus wood products was 

unrecognised (Apiolaza et al., 2011). Recently the situation has started to change as a result of 

the New Zealand Dryland Forest Initiative (NZDFI), which introduced several ground-durable 

dryland Eucalyptus species as alternatives for ex-pasture lands (NZDFI, 2013). Eucalyptus 

globoidea was one of the top-ranked Eucalyptus species in the NZDFI programme for its 

desirable properties (Nicholas & Millen, 2012b), for example, highly durable heartwood.  

 A managed forest is a dynamic biological system that continuously changes as a 

response to natural variations as well as to silvicultural practices. Therefore, it is essential to 

explore current and future forest dynamics through growth and yield models in order to make 

effective decisions (Blake et al., 1990; Blanco et al., 2005; Castedo-Dorado. et al., 2007; Clutter 

et al., 1983). The first generation of models, namely mensurational-statistical models, give little 

information about the mechanisms of forest dynamics, but provide robust growth predictions 

(Korzukhin et al., 1996). Moreover, forest growth models are often based on large datasets, 
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compiling long-term field measurements (Castedo-Dorado et al., 2007; Pienaar & Rheney, 

1995) or sophisticated databases, for example, information obtained from remote sensing data 

(Battaglia et al., 2004; Landsberg et al., 2003).  

 However, in scenarios where comprehensive data is not available, it may still be 

desirable to forecast forest growth (Vanclay, 2010). Generally, in data-poor situations, 

preliminary models can still be developed for new species (Berrill et al., 2007; Kitikidou et al., 

2016; Palahí & Grau, 2003). Vanclay (2010) proposed a single parameter robust method for 

this type of situation. Such models are often inaccurate but may be useful (Box, 1976) to obtain 

an initial forecast.  

Eucalyptus species were planted all over New Zealand in a scattered way, sometimes 

to satisfy research needs or to pursue the personal interests of farmers. Preliminary and 

indicative models are available for Eucalyptus fastigata, E. nitens, and overall stringy-bark 

groups in New Zealand (Berrill & Hay, 2005; Berrill & Hay, 2006). So, to have a preliminary 

stand-level model to describe all stand attributes for E. globoidea is a complementary 

advancement. 

 This chapter outlines the development of a stand-level E. globoidea growth and yield 

model that describes several important attributes. In particular, mean top height (MTH), basal 

area (G), maximum diameter at breast height (Dmax), standard deviation of diameter (SDD), 

stand volume (V), self-thinning and height-diameter relationship (H-D). They were developed 

with available data using a traditional mensurational modelling approach.  

7.2 Materials and methods 

7.2.1 Data preparation and description 

Stand-level E. globoidea plantation data were available from SCION’s (the former New 

Zealand Forest Research Institute) permanent sample plot system (Pilaar & Dunlop, 1990). 
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Data from 29 permanent sample plots (PSPs) in ten different localities were available (Table 

7. 1 and Figure 7.1).  

 
Figure 7.1 Permanent sample plot (PSP) locations and topography. 
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Table 7. 1 Summary of the variables used for modelling. 

Variable Unit 
Statistical summary of variable 

Mean Min. Max. SD 

Plot size ha 0.06 0.04 0.10 0.02 

Age (t) Years 13.84 3.15 24.85 5.90 

Individual tree height (h) m 12.90 0.10 39.80 9.05 

Mean top height (MTH) m 18.98 3.50 28.80 7.05 

Diameter at breast height at 1.4m (DBH) cm 22.90 0.10 62.30 14.49 

Max DBH (Dmax) cm 39.79 5.40 62.30 13.66 

Basal area (G) m2ha-1 30.59 0.54 77.88 18.84 

Volume (V) m3 ha-1 161.34 0.40 538.60 130.09 

Standard deviation of diameter (SDD) cm 5.34 1.35 11.86 2.20 

Stocking (N) stems ha-1 496.99 141.09 1375 317.33 

Altitude (Alt) m 211.70 80 300 100.41 

Slope (°) 23.27 8 42 13.06 

  

Trees were measured from the PSPs at 1 to 10-year intervals with an irregular 

frequency. Mean top height (MTH) and maximum diameter (Dmax) of the trees were calculated 

from the individual tree measurements by following the procedure proposed by Goulding 

(2005). The standard deviation of DBH (SDD) was calculated for each PSP. Basal area (G) was 

calculated as the sum of cross-sectional area at breast height (1.4m), and then this was divided 

by plot size to provide a per hectare estimate. Stand volume (V) was calculated for each 

measurement within each sample plot. 

 The original data were organised to fit both yield and difference equations. The stand 

level summary data was organised by representing all possible measurement time interval. This 

equal interval data was used to fit the differential equations. The stand level summary data 

organised in simple time increment was used to fit stand volume equations. The individual tree 

measurement data from all stand used to develop a height-diameter relationship.  
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7.2.2 Modelling and evaluation 

The algebraic difference approach (ADA) (Bailey & Clutter, 1974) was applied for 

modelling mean top height (MTH), basal area (G), maximum diameter (Dmax) and standard 

deviation of diameter (SDD). Well known and frequently-used polymorphic and anamorphic 

forms of difference equations (Bailey & Clutter, 1974; Belli & Ek, 1988; Ek, 1974; Vanclay, 

1994; Zeide, 1993) ( 

Table 7.2) were tested by fitting non-linear least-squares (Clutter, 1963), to find the 

best fitted model based on their residuals distribution and fitting statistics (e.g. RMSE, SE).  

Table 7.2 Different forms of difference equations. 

 Generic name Expression No. 

P
o
ly

m
o
rp

h
ic

 f
o
rm

 

Schumacher 1 Y2 = e
ln(Y1)(

t1
t2
)+α(1−

t1
t2
)
  53 

Schumacher 2 Y2 = e
ln(Y1)(

t1
t2
)
𝛾
+α[1−(

t1
t2
)𝛾]

  54 

Gompertz 1 𝑌2 = 𝑒ln(𝑌1)𝑒
−𝛽(𝑡2−𝑡1)𝑒𝛼[1−𝛽(𝑡2−𝑡1)]   55 

Gompertz 2 𝑌2 = 𝑒ln(𝑌1)𝑒
−𝛽(𝑡2−𝑡1)+𝛾(𝑡2

2−𝑡1
2)
𝑒𝛼[1−𝑒

−𝛽(𝑡2−𝑡1)+𝛾(𝑡2
2−𝑡1

2)] 56 

Weibull 1 𝑌2 = 𝑌1𝑒
−𝛽(𝑡2

𝛾
−𝑡1

𝛾
) + 𝛼[1 − 𝛽(𝑡2

𝛾
− 𝑡1

𝛾
)]  57 

Weibull 2 𝑌2 = 𝛼 − 𝛽(
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Stand volume yields (V) were modelled by testing various simple, established and 

commonly used functions (Table 7.3), and height yield (H-D) models were created by fitting 

the Näslund (1936) equation with an exponent, -2, represented as: 

H = 1.4 + (α +
β

D
)−2                                                                                                                          (69) 

where H is tree height (m), D is diameter (cm) at breast height (1.4m), and α and β are 

regressions coefficients. The exponent term here is changeable. This function is widely used 

and can be conveniently expressed in a linear form: 

D

(H−1.4)0.4
= α × D + β                                                                                                                    (70) 

 A height-diameter relationship can be local at a plot level (Curtis, 1967; Garcia, 1974) 

or stand level (Zhao, 1999) when few plots are sampled. Therefore, a better height-diameter 

relationship can be obtained by identifying and incorporating relevant factors accounting for 

differences among the stands in the sites (Zhao, 1999). This was achieved by separating and 

linearly expanding the regression coefficients with the relevant factors described previously in 

Chapters 3 and 4. 

Table 7.3 Volume equations. 

Expression Reference No. 

𝑉 = 𝛼 × 𝐺 ×𝑀𝑇𝐻 (Soalleiro, 1995) 71 

𝑉 = 𝐺 ×𝑀𝑇𝐻(𝛼+𝛽𝑡)𝑒(𝛾+𝛿𝑡)  (Jansen et al., 1996) 72 

𝑉 = 𝐺 × (𝛼 +
𝛽

𝑀𝑇𝐻
) (Burkhart, 1977) 73 

𝑉 = 𝑒(𝛼+𝛽 log𝑀𝑇𝐻)+𝛾 log𝐺 (Candy, 1989) 74 
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 Due to the small number of plots, a conceptual self-thinning/mortality model was 

established by applying Reineke’s stand density index (SDI) approach (Reineke, 1933). This 

was done by estimating quadratic mean diameter at breast height (DBH) and basal area (G). 

 All the models except self-thinning were evaluated through the validation procedure 

described in Chapter 4, which included a full set of visual analyses of residuals, model 

projection plot as well as RMSE, SE, MAE, BIAS, MAPRESS, MPRESS and adjusted R2. 

Adjusted R2 were not considered for assessing difference equations. 

7.3 Results 

7.3.1 Mean top height (MTH) model  

 The first Von-Bertalanffy Richards polymorphic model (Equation 60) exhibited the 

most precise fitting statistics. It had minimum bias and the lowest standard error of prediction 

compared to the other models tested. However, the RMSE and MAE were higher in model 

fitting statistics, which reduced during validation to 3.852 and 2.512 respectively (Table 7.4). 

The model residuals were well distributed with minor heteroscedasticity at the beginning of 

the modelling period. The model was fitted over the measured data by covering all the MTH 

ranges, although there were a couple of measurements that stood out from the fitting line 

(Figure 7.2).  

Table 7.4 Mean top height (MTH) model fitting and validation statistics. 

Action RMSE MAE BIAS SE AICc MPRESS MAPRESS 

Fitting 7.185 5.467 -1.777 1.116 701.226 - - 

Validation 3.852 2.512 0.066 1.112 645.430 0.009 0.946 
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Figure 7.2 Mean top height (MTH) model results: A) Residuals against prediction plot of first 

Von Bertalanffy-Richards polymorphic equation, light blue points represent model fitting, red 

points indicate validation residuals, and model fit is shown by the black line; B) Residuals 

frequency distribution, red dashed line shows the mean; and C) Model fit (blue lines) over 

measured MTH (thin black lines). 

7.3.2 Basal area (G) model 

 Among tested models, the anamorphic Schumacher model (Equation 63) was found to 

be the best fitted for basal area prediction. This model had the lowest error and greatest 

precision. Precision increased during validation with much less error (Table 7.5). The residual 

plot exhibited minor heteroscedasticity. The residuals distribution was positively biased, which 
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indicated a slight overprediction. Moreover, the model predicted basal area covering the 

measured range, except for two stands (Figure 7.3). 

Table 7.5 Basal area (G) model fit and validation statistics. 

Action RMSE MAE BIAS  SE AICc MPRESS MAPRESS 

Fitting 25.303 21.250 2.893  6.893 746.594 - - 

Validation 13.431 9.988 0.653  6.800 704.571 1.054 0.841 

 

 

Figure 7.3 Basal area (G) model results: A) Residuals against prediction plot of first 

Schumacher anamorphic equation, light blue points represent model fitting, the red points 

indicate validation residuals, and model fit is shown by the black line; B) Residuals frequency 

distribution, red dashed line shows the mean; and C) Model fit (blue lines) over measured G 

(thin black lines). 
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7.3.3 Maximum diameter (Dmax) model 

 The Hossfeld polymorphic model (Equation 59) predicted the maximum diameter 

(Dmax) with most overall precision and least bias in comparison with other models. In this case, 

RMSE and MAE increased from fitting to validation statistic, and bias went from positive to 

negative. However, the standard error (SE) reduced slightly for validation compared with fit 

statistics. The low MPRESS and MAPRESS values also presented model goodness-of-fit 

(Table 7.6). The residuals plot showed high bias at the beginning and end of the modelling 

period, though the residuals frequency distribution was normal. The predicted Dmax plot 

covered all the measurements reasonably well (Figure 7.4).  

Table 7.6 Maximum diameter (Dmax) model fitting and validation statistics. 

Action RMSE MAE BIAS SE AICc MPRESS MAPRESS 

Fitting 2.400 1.759 0.054 2.411 1052.299 - - 

Validation 6.699 4.681 -0.061 2.388 973.322 0.059 0.932 
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Figure 7.4 Maximum diameter (Dmax) model results: A) Residuals against prediction plot of 

Hossfeld polymorphic equation, light blue points represent model fitting, the red points indicate 

validation residuals, and the model fit is shown by the black line; B) Residuals frequency 

distribution, red dashed line shows the mean; and C) Model fit (blue lines) over measured Dmax 

(thin black lines). 

7.3.4 Standard deviation of diameter (SDD) model 

 Among all the models, the standard deviation of diameter (SDD) was best predicted by 

the second Schumacher polymorphic model (Equation 54). The model showed minimum fitting 

statistics with the least prediction errors. The statistics increased slightly from fitting to 

validation.  Besides, the model goodness-of-fit confirmed by MPRESS and MAPRESS (Table 

7.7).  
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Table 7.7 Standard deviation of DBH (SDD)model fitting and validation statistics. 

Action RMSE MAE BIAS SE AICc MPRESS MAPRESS 

Fitting 1.571 1.224 0.412 1.577 915.086  - 

Validation 1.959 1.513 0.337 1.569 843.225 0.407 0.596 

 

Graphically, the model was well predicted, and residuals showed normal tendencies. 

The residuals plot shows overprediction and positive bias of the model with few outliers in the 

frequency distribution plot. The prediction plot shows that the model included the full range of 

measured SDD (Figure 7.5).  
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Figure 7.5 Maximum diameter (Dmax) model results: A) Residuals against prediction plot of 

Hossfeld polymorphic equation, light blue points represent model fitting, the red points indicate 

validation residuals, and the model fit is shown by the black line; B) Residuals frequency 

distribution, red dashed line shows the mean; and C) Model fit (blue lines) over measured SDD 

(thin black lines). 

7.3.5 Stand volume (V) model  

 The most satisfactory volume yield model was a four parameter one (Equation 72) by 

Jansen et al. (1996). The fitting statistics represented minimal prediction error and precision, 

though validation statistics were greater in both cases. The small MPRESS and MAPRESS 

confirmed the precision of the model (Table 7.8). These results are also confirmed by the 
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graphical presentation. Although, residuals against predicted plot displayed minor 

heteroscedastic tendency (Figure 7.6).  

Table 7.8 Stand volume(V) model fitting and validation statistics.  

Action RMSE MAE BIAS SE AICc MPRESS MAPRESS 

Fitting 39.122 27.983 -1.102 40.5 621.002 - - 

Validation 140.959 89.827 -0.582 39.413 569.752 -0.845 0.868 

 

 

Figure 7.6 Stand volume (V) model results: A) Estimated stand volume from measured data; 

B) Residuals against prediction plot, light blue points represent model fitting, red points 

indicate validation residuals, and model fit is shown by the black line; and C) Residuals 

frequency distribution, red dashed line is shown the mean. 



 

263 
 

7.3.6 Height diameter (H-D) model 

The stand-specific individual height-diameter (H-D) model showed precise prediction 

(Equation 75). Stand-specific altitude (Altitude), and basal area (G) were found to influence 

the H-D relationship significantly (P<0.05) and adding them into the final model improved the 

prediction accuracy of the model. The goodness-of-fit values increased slightly from fitting to 

validation statistics (Table 7.9). The residuals plot showed a normal distribution, and the model 

fitted well. The frequency of residuals distribution also showed similar normal attributes 

(Figure 7.7).  

𝐻 = 1.4 + ((𝛼0 + 𝛼1 × 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒) +
(𝛽0+𝛽1×𝐺)

𝐷
)−2                                                            (75) 

Table 7.9 Height-diameter relationship (H-D) model fitting and validation statistics. 

Action RMSE MAE BIAS SE AICc MPRESS MAPRESS 

Fitting 3.080 2.418 -0.001 3.101 1567.12 - - 

Validation 4.374 3.375 -0.020 3.222 1350.955 -0.001 0.530 
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Figure 7.7 A) Measured height-diameter (H-D), blue line shows the linear trend; B) Residuals 

against prediction plot, light blue points represent model fitting, red points indicate validation 

residuals, model fit is shown by the blue line; and C) Residuals frequency distribution, red 

dashed line is shown the mean. 

7.3.7 Self-thinning model 

The self-thinning model was developed using Reineke’s SDI method, and the result 

showed a precise fit for the data. Stocking ranged from 150-1350stems ha-1. The trees started 

to die when they approached 100% of the maximum stocking. Highest stocking frequency 

showed at 400-650 stems ha-1 (Figure 7.8).  
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Figure 7.8 A) Reineke’s SDI curve represented with self-thinning lines and A) SDI distribution 

plot. 

7.4 Discussion 

  This study developed and demonstrated a preliminary set of mature stand growth and 

yield models for E. globoidea in New Zealand using sparsely available data. The state of a 

stand was adequately described by the following state variables: mean top height, basal area, 

volume yield, stocking, maximum diameter, standard deviation of DBH and the height-

diameter relationship. The nature of the scheme is described by the rate of change of these 

variables over time by their corresponding transition function. All the transitional functions 

used have a theoretical basis. These models presented in this study fulfil the basic modelling 

assumptions, being path invariant and having no logical circular issues in prediction.   

The final models were the best-fitted models, which generally had the highest accuracy 

among the tested set of equations from several differential forms. There were some errors in 

model prediction, which may be due to the irregular measurement intervals for the stands 

included in the study. Lee (1998) reported that long measurement intervals can produce larger 

errors than short measurement intervals. Therefore, a regular short interval dataset would likely 

have given more precision in prediction. Also, the measurement periods were not well 
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distributed, which may have caused bias and heteroscedasticity through the modelling 

period(Lee, 1998). Furthermore, model precision could likely have been improved by 

reinforcing it with more biological, or silvicultural information, for example, thinning 

information or any natural disturbance events (Park & Wilson, 2007). In this study, such 

information was not available.   

 The best MTH, Dmax and SDD models took polymorphic forms, similar to earlier 

preliminary modelling studies. For example, even-aged Cupressus lusitanica and C. 

macrocarpa plantations (Berrill, 2004), Acacia melanoxylon (Berrill et al., 2007), Eucalyptus 

fastigata (Berrill & Hay, 2005) in New Zealand and Pinus nigra in Catalonia, Spain (Palahí & 

Grau, 2003). However, the basal area (G) was best fitted with an anamorphic form, which is 

unusual but can be found in similar types of data-limited situations. For example, Vanclay 

(2010) suggested one-parameter anamorphic forms to deal with a similar small dataset.  

Borders et al. (1988) reported autocorrelation in data while using equal interval 

datasets, especially in a data-limited situation. This autocorrelation may have influenced the 

final results of this study. However, it can be overcome by collecting and adding more data to 

the final modelling dataset. This data should cover all age classes as well as sites (Borders, 

1989). Also, all these models are based on mensurational equations and deserve further 

reinforcement from a biological perspective, by adding physiology into the modelling 

procedure. Finally, the self-thinning model was based on the SDI concept of Reineke (1933), 

which requires further testing and elaboration with more data. Pretzsch and Biber (2005) found 

that the SDI function’s power (Reineke, 1933) changed with species and site, in this study the 

default value (1.605) was used. Specifically, the self-thinning model needs to fit with a 

differential form by considering different stocking and sites. 

Although, these preliminary models offered a first stage indication and reasonably 

accurate prediction of mature E. globoidea in New Zeland, the set of models presented here 
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did not cover all the age classes so that some extrapolation may occur during projection. 

Silvicultural and natural disturbances were not accounted for in the models. Therefore the 

model's performance could be altered. The model set was site specific for mature stands, hence 

need to be calibrated with new site data.  

7.5 Conclusion 

 This study developed a set of preliminary growth and yield models for E. globoidea 

which satisfy basic mensurational assumptions. Mean top height, maximum diameter, and 

standard deviation of DBH were represented respectively by first Von-Bertalanffy Richards, 

Hossfeld, and second Schumacher polymorphic difference equations. They yielded the 

prediction with the greatest accuracy, whereas, basal area was predicted by Schumacher 

anamorphic difference equation with higher precision. The SDI approach also fitted well to 

predict self-thinning and give information about stocking. The performance of stand volume 

yield and height-diameter relationship models were precise with site-specific factors. These 

models will provide a first-stage indication of, and understanding about, the growth pattern of 

E. globoidea. The results will vary among the sites because of different site conditions, 

therefore caution must be exercised. However, more tree measurement data including site 

characteristics and silvicultural regimes may increase the precision of these models and reduce 

bias. 
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8     
Conclusions 
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8. A general discussion 

The findings of this doctoral thesis contribute to advancement in the understanding of growth 

dynamics of two dryland Eucalyptus species (E. bosistoana and E. globoidea) planted in New 

Zealand. In addition, this study presents improved modelling approaches for these species. 

These include both juvenile and mature plantation stands at different modelling resolutions. In 

particular, this thesis highlights the following models: (i) a purpose-specific non-geostatistical 

digital elevation model (DEM) interpolation method; (ii) within-site and between sites 

variables which influence the height growth and survival of juvenile E. bosistoana and E. 

globoidea, (iii) different modelling resolutions to accommodate between-site variables for E. 

bosistoana and E.globoidea, and (iv) a preliminary mensurational growth and yield model for 

mature E. globoidea. 

8.1 Within-site and between-sites growth and survival factors 

Within-site topographic attributes were extracted from the DEM, which was developed 

by the simple process described in Chapter 2. Topographic attributes significantly affected the 

height growth and survival of juvenile Eucalyptus plantations (Chapter 3). Topographic 

attributes related to surface shape (e.g. curvature) and position (e.g. morphometric protection 

index, and distance from the top ridge) were most important. These attributes indirectly 

characterise and represent the soil and climatic variables (Beven & Kirkby, 1979; Böhner & 

Antonić, 2009; Coops et al., 2000; Zevenbergen & Thorne, 1987). The within-site temperature 

was independently modelled but was not statistically significant, and therefore was not 

included in the final model. This may be due to the lack of position-specific climatic data for 

each plot.  Soil information was not tested for similar reasons.  

The site-specific models showed consistent results (Chapter 3), where Eucalyptus 

species were influenced by topography. The site-specific models developed here are 

temperature sensitive. These findings are in line with other studies for Eucalyptus (Oparah, 
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2012; Prior & Bowman, 2014). However, the soil information did not significantly influence 

the height growth and survival of Eucalyptus. The available soil information is very coarse and 

has been shown to be inaccurate in a previous study (Pearse et al., 2015), which may be the 

reason for its non-significance.  

The final models were statistically sound. The precision and bias of the final models 

could be improved by including more initial site-specific data, for example, initial height 

measurements and site characteristics. Furthermore, better soil and climatic information have 

the potential to provide a better understanding of the ecophysiological process.  

All the site-specific tree and climatic data were collected through repeated 

measurements and maintained a hierarchical structure, hence there was a scope to apply mixed-

effect models (Faraway, 2016; Wu, 2009). Also, testing the effects of different independent 

variables on height growth and survival proportion by sub-setting the age may explain temporal 

variability. These analyses may be able to explain better error structure of the models, as well 

as provide deeper insights into the underlying statistical process. Moreover, in an even-aged 

plantation stand, mortality or survival is stochastic in nature and often can be over-predicted 

with traditional approaches (Woollons, 1998). This issue can be better handled and understood 

with stochastic modelling (Woollons, 1998) or zero inflated beta regression (Ospina & Ferrari, 

2012). However, the measurements were taken at different times in different experiments and 

were sparse, hence it was not feasible to apply such models in this study. Therefore, the applied 

method was the most parsimonious. Nevertheless, above mentioned analytical practices can be 

done in future provided suitable datasets are available.      

8.2 Flexible modelling approach 

Different modelling approaches (Chapters 4 and 5) were applied and assessed based on 

the precision and bias of validation results (Chapter 6). The augmented PULSE modelling 

approach was the best, offering a robust understanding of the ecophysiological process without 
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violating the basic mensurational assumptions. The model can also be built with minimal 

available information, though more specific information unequivocally increases the model 

precision and reduce bias. Casnati (2016) reported similar results for mature stands of 

Eucalyptus grandis and Pinus taeda in Uruguay. However, different descriptive statistics of 

temperature and radiation such as standard deviations, ranges, sums, number of days above or 

below a certain temperature need to be explored. Furthermore, a daily PULS might be 

estimated through the proposed framework which may produce a more realistic water balance 

model, but it is computationally expensive and, given the uncertain estimates of rooting depth 

available, was not considered as part of this study.     

8.3 Preliminary growth and yield model for E. globoidea 

Juvenile models provide better understandings of the plantation establishment and site 

preparation, but mature stand models give better projections of future productivity. Several 

management decisions can be made from these projections, for example, planning silvicultural 

regimes. Mason et al. (1997) reported limitations on building growth and yield models by 

linking juvenile and mature stand data. Therefore, a full set of preliminary growth and yield 

models was developed for mature stands of E. globoidea from the available mature stand data 

only.  The final models developed here are comparable to the indicative model of Berrill and 

Hay (2006) for the stringy-bark Eucalyptus group in New Zealand. The models are statistically 

sound with satisfactory precision and minimal bias. However, there are some heterogeneous 

tendencies of the models' residuals, which may be improved by reinforcing the models with 

more data and using a variance power function through weighted regression (Davidian & 

Carroll, 1987; Giltinan et al., 1986).  

8.4 Management implications 

Chapter 2 results show that high-resolution (0.5m × 0.5m) DEMs can be developed 

from low-cost GNSS (RTK-GPS), especially, where no DEM and LiDAR data exist. This 
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approach could be effectively applied for developing DEMs for small geographic areas, like 

plots, but the labour involved likely precludes its use for the larger geographic areas, like stands 

or whole forests. 

Chapter 3 reports on a set of models for height growth and survival of two dryland 

Eucalyptus species on a smaller spatial scale than conventional practice. Similar to Chapter 3, 

Chapters 4 and 5 reported on the site-specific models. These findings can be used to predict 

and understand the eco-physiology of dryland Eucalyptus. The information produced by the 

models could be used at the time of plantation establishment to aid the process of site-species 

matching and site preparation.  

Among the several dryland Eucalyptus species studied, mature stand E. globoidea 

inventory data was available from a few PSP plots around New Zealand (Pilaar & Dunlop, 

1990). Therefore, the preliminary mature stand growth and yield models were built to represent 

the growth dynamics of this species over time in Chapter 7. This model will allow projection 

of future growth and yield for E. globoidea.  

8.5 Research needs and research questions 

The interpolation of DEM from GNSS (RTK-GPS) data in this study was tested in 

particular site-specific conditions, which may need further adjustment by considering different 

surfaces as well as the environmental situation. The interpolation method could be tested with 

different spatial arrangement of the data points collected in order to reduce the effects of any 

spatial-autocorrelation. In addition, different non-parametric statistical approaches (Cracknell 

& Reading, 2014; Li et al., 2011) such as random forest algorithm, or machine learning 

procedures could be tested and compared in future research as they offer more robust and 

precise interpolation results.  

The models developed and the results produced in this study provide a better 

understanding of the juvenile and mature growth dynamics for the dryland Eucalyptus on 
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different spatial scales. However, further research is needed to fully understand the growth 

process and the behaviour of these species. The models could be tested in different climatic 

scenarios: they could be altered to include better soil information, particularly drought severity 

and frequency, and the interaction of the trees with light and other competing vegetation (e.g. 

weeds). Furthermore, the results presented here were considered without any silvicultural or 

site preparation data, which should be included in future studies.  Finally, all the results are 

site-specific, the models presented in this study need to be tested and calibrated with many 

different sites to make the models more orthogonal and increase their applicability.  

8.6 Conclusion 

This study explored different aspects to understand juvenile and mature dryland E. 

bosistoana and E. globoidea growth dynamics in New Zealand. Different modelling techniques 

were applied and developed for predicting and understanding the Eucalyptus species. The 

ecophysiological models presented in this study showed great potential, and they have 

important uses compared to other time-based approaches. However further research, including 

proper soil data, is needed. Finally, a set of mensurational models were built for E. globoidea 

mature stands, which could be able to generate initial mature stand growth dynamics 

information and identify areas for future research.  
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Appendices 

Appendix I 

Additionally, the top 10 cm of soil was sampled at each pit location for soil chemical 

analysis. Chemical analyses included quantifying a range of micro- and macro-nutrient 

concentrations; and additionally, cation exchange capacity (CEC), pH, total base saturation 

(TBS), volumetric weight (VW), and organic matter (OM) content (Table I). The chemical 

analyses were undertaken by an analytical testing company (Hill Laboratories, Christchurch, 

New Zealand) following their standard procedures. 

 Table I. Summary statistics of the soil chemical analysis data.  

Variables Unit A B C 

Min Max Mean Sd Min Max Mean Sd Min Max Mean Sd 

OM % 0.70 5.60 2.99 1.1 1.0 4.6 2.72 1.05 3 9.1 5.67 1.51 

tC % 0.40 3.20 1.73 0.7 0.6 2.7 1.57 0.61 2 5.3 3.29 0.89 

tN % 0.10 0.30 0.20 0.1 0.1 0.4 0.18 0.05 0.13 0.5 0.26 0.1 

TBS % 62.00 94.0 77.4 7.1 48 80. 65.6 7.45 34 81 49.5 12.9 

C/N  3.60 13.1 8.83 2.3 4.7 12 8.50 2.02 11 14 12.6 0.98 

AMN/TN  1.00 4.90 2.62 1.1 1.3 6.7 2.20 1.02 1.50 3 2.37 0.45 

VW g/mL 0.91 1.10 0.99 0.1 0.9 1.2 1.06 0.08 0.74 0.98 0.86 0.06 

pH pH unit 5.80 7.10 6.26 0.3 5.5 6.0 5.76 0.15 5.40 6.40 5.69 0.27 

OP mg/L 3.00 16.0 6.45 3.3 3.0 14 5.36 2.25 2 12 6.08 3.19 

K me/100g 0.63 1.38 0.95 0.2 0.4 1.3 0.89 0.25 0.16 0.6 0.36 0.12 

Ca me/100g 5.10 12.8 8.60 2 3.6 9.7 6.80 1.47 2.10 12.4 5.25 2.9 

Mg me/100g 2.95 6.75 4.50 1.1 1.6 6.1 3.23 1.11 0.74 5.87 2.02 1.5 

Na me/100g 9.00 40.0 23.9 9.7 9.0 34 17.9 5.92 1 33 10.54 10.82 

CEC me/100g 13.0 24.0 18.6 2.9 12 22 16.8 2.43 9 24 14.96 3.84 

B mg/kg 0.50 1.20 0.79 0.2 0.4 0.8 0.62 0.11 0.20 1.5 0.48 0.33 

tP mg/kg 282 549 409 64 374 566 484 46.7 165 526 359.62 103.2 

AMN µg/g 14 112 50.6 25 20 182 40.9 28.9 20 111 62.83 22.49 

*OM = Organic matter, tC = Total carbon, tN = Total nitrogen, TBS = Total base saturation, 

C/N = Carbon nitrogen ratio, AMN/TN = Anaerobically mineralisable N/total N, VW = 

Volume weight, OP = Olsen phosphorus, K = Potassium, Ca = Calcium, Mg = magnesium, Na 

= Sodium, CEC = Cation exchange capacity, B = Boron, tP = Total phosphorus, AMN = 

Anaerobically mineralisable N. 
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Table II. Final juvenile height model summary with parameters 

Species Site Sat 𝛼0 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 

E
. 

g
lo

b
o
id

ea
 

A
 

Est -2.051 2.010 0.0043 - - - 1.871e+016 -1.398e-02 -1.584e+01 -2.829e+0 - - - 

SE 0.525 0.517 0.0005 - - - 1.656 9.245e-04 1.652e+00 8.838e-01 - - - 

p 0.001 0.0001 2.59e-1 - - - < 0.000002 < 2e-16 < 2e-16 0.001607 - - - 

E
. 

b
o
si

st
o
a
n
a
 B

 

Est 0.53609 -0.0977 0.01260 1.25919 -8.445493 - 1.478807 0.042378 -1.04705 -0.01461 -0.01276 6.573568 0.015729 

SE 0.16774 0.00936 0.00216 0.19244 0.430181 - 0.141687 0.008319 0.154006 0.001257 0.002026 0.337177 0.001469 

p 0.00144 < 2e-16 6.84e-1 9.58e-11 < 2e-16 - < 2e-16 4.18e-07 1.81e-11 < 2e-16 4.39e-10 < 2e-16 < 2e-16 

C
 

Est 3.34557 -2.447348 0.00245 -0.0086 -0.016512 -1.36 0.537881 0.0199025 0.0447812 - - - - 

SE 0.73907 0.627552 0.00095 0.00152 0.004243 0.268 0.1293038 0.0015926 0.0046178 - - - - 

p 8.43e-06 0.000117 0.01022 3.83e-08 0.00012 6.62e-07 4.09e-05 < 2e-16 < 2e-16 - - - - 
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Table III. Final juvenile survival model summary with parameters. 

Species Site Stat. 𝛼0 𝛼1 𝛼2 𝛽0 𝛽1 𝛽2 𝛽3 

E. globoidea 

A
v
er

y
 Est 0.292 0.0465 -0.04293 -3.2431 3.1882 0.00359 -0.10117 

SE 0.015 0.0187 0.0121 1.1201 1.0708 0.00057 0.04987 

p < 2e-16 0.0130 0.00043 0.0038 0.0029 5.48e-10 0.04286 

E. bosistoana 

D
il

lo
n

 Est 0.01036 - - 0.51373 0.1154 - - 

SE 0.0120 - - 0.8424 0.0519 - - 

p 0.3907 - - 0.542 0.0272 - - 
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Appendix II 

Table IV. Soil description of all the study sites. 

Series Dom. Soil 

Type 

Soil Class Class Name Comments 

Mairaki Silt loam PXM Mottled fragic pallic Fragic pallic soils are 

predominantly silty and 

severely restrict root 

movement. 

Phoebe Silt loam PXM Mottled fragic pallic 

Jordan Silt loam and 

shallow silt 

loam 

PXJ Argillic fragic pallic 

Wither Hills soils PXJN Argillic-sodic fragic 

pallic 

Glenmark Silt loam PJC Calcareous argillic 

pallic 

Argillic pallic soils have a clay 

accumulation in the sub-soils 

Flaxbourne Hill soils PJT Typic argillic pallic 

Bideford Loam PJM Mottled argillic 

pallic 

Grower Hill soils PIM Mottled immature 

pallic 

Immature pallic soils are 

insufficiently developed and 

brittle Kidnappers Silt loam PIT Typic immature 

pallic 

Halcombe Silt loam PPJ Argillic perch-gley 

pallic 

Perch-gley pallic soils occur on 

sites which are periodically 

saturated. Matapiro Sandy loam PPU Duric perch-gley 

pallic 

Matapiro Light sandy 

loam 

PPU Duric perch-gley 

pallic 

Pokororo Steepland soils BOA Acidic orthic brown Orthic brown soils have weak 

soil strength. Most commonly 

occur in hilly or steep slopes. 

Marokopa Clay loam BOA Acidic orthic brown 

Tuhitarata Silt loam BOP Pallic orthic brown 

Atua - BOP Pallic orthic brown 

Wainui Heavy silt 

loam 

BOP Pallic orthic brown 

Ngaumu Fine sandy 

loam 

BOM Mottled orthic brown 

Waimarama Sandy loam BOC Calcareous orthic 

brown 

Tauhara Steepland soils MOI Immature orthic 

pumice 

Orthic pumice soils are well to 

imperfectly drained but do not 

severely restrict water 

movement 

Kaharoa Sand MOZ Podzolic orthic 

pumice 

Awatere Gravelly sand RFT Typic fluvial recent Fluvial recent soils deposited by 

flowing water. 

Mahoenui Sandy loam ROT Typic orthic recent Orthic recent soils occur on 

eroded land. 

Opouri Steepland UYT Typic yellow ultic Yellow ultic soils are clayey 

and imperfectly drained. 
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Table V. Height growth model parameter estimates. 

Species Stat. 𝜶𝟎 𝜶𝟏 𝜷𝟎 𝜷𝟏 𝜷𝟐 

E. globoidea  Estimate -1.08776 0.09069 -1.35861 0.17674 - 

SE 0.42408 0.02577 0.69570 0.04622 - 

P 0.011690 0.000634 0.053422 0.000220 - 

Sig. * *** . *** - 

E. bosistoana Estimate 2.120282 -1.724324 -0.999457 0.019529 2.189817 

SE 0.412280 0.34617 0.499306 0.019529 2.189817 

P 1.15e-06 2.29e-06 0.04771 0.00228 5.10e-05 

Sig. *** *** * ** *** 

 

Table VI. Survival model parameter estimates. 

Species Stat. 𝜶𝟎 𝜶𝟏 𝜶𝟐 𝜷𝟎 

E. globoidea Estimate -1.36783 0.14865 0.07710 0.74156 

SE 0.24489 0.02742 0.02102 0.14259 

p 1.11e-07 2.40e-07 0.000342 6.59e-07 

Sig. *** *** *** *** 

E. bosistoana Estimate -0.591724 0.026553 0.022564 0.827190 

SE 0.143901 0.007501 0.008251 0.160142 

p 6.33e-05 0.000527 0.006965 7.23e-07 

Sig. *** *** ** *** 
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Appendix III 

 

Table VII.  PULSE model (RTVPD) parameters estimates. 

Species Stat. 𝛼 𝛽 

E. bosistoana 

 

Estimate 8.246e-05 1.077e+00 

SE 8.361e-05 1.039e-01 

P 0.32 <2e-16 

Sig. Codes - *** 

E. globoidea Estimate 8.246e-05 1.077e+00 

SE 8.361e-05 1.039e-01 

P 0.326 <2e-16 

Sig. Codes - *** 

           Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘-’ 
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Table VIII. Parameter estimates for augmented PULSE height yield model (RTVPD). 

Species Stat. α β0 β1 β2 

E. bosistoana 

 

Estimate 8.959e-05 1.193e+00 1.775e-01 -1.388e-01 

SE 8.019e-05 9.072e-02 8.233e-02 3.709e-02 

P 0.266 <2e-16 0.033 0.0002 

Sig. Codes - *** * *** 

E. globoidea Estimate 8.156e-05 1.065e+00 2.589e-01 - 

SE 7.564e-05 9.476e-02 8.432e-02 - 

P 0.283 <2e-16 0.002 - 

Sig. Codes - *** ** - 

        Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘-’ 

 

Table IX. Parameter estimates for the survival proportion PULSE model (RTVPD). 

Species Stat. 𝛼 𝛽 

E. bosistoana 

 

Estimate -0.0004242 0.614 

SE 0.0006846 0.168 

P 0.536 0.0003 

Sig. Codes - *** 

E. globoidea Estimate -0.003079 0.502222 

SE 0.003545 0.121711 

P 0.386 6.13e-05 

Sig. Codes - **** 

  Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘-’ 
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Table X. Parameter estimates for augmented survival proportion PULSE model (RTVPD). 

Species Stat. α β0 β1 

E. bosistoana 

 

Estimate -0.0001061 0.6839106 0.0096863 

SE 0.0001789 0.172794 0.0024732 

P 0.5541 0.000114 0.000134 

Sig. Codes - *** *** 

E. globoidea Estimate -0.003200 0.333132 0.082404 

SE 0.003622 0.150016 0.082404 

P 0.3784 0.027 0.0463 

Sig. Codes - * * 

                    Sig. Codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 0.05 ‘.’; 0.1 ‘- 

 

 

 

 

 

 

 

 

 



 

288 
 

Appendix IV 

 

Table XI. Preliminary models parameter estimates. 

Model Stat. 𝛼 β 𝛾 δ 

MTH Estimate 33.27801 0.10493 - - 

SE 0.59493 0.00488 - - 

p <2e-16 <2e-16 - - 

Sig. *** *** - - 

G Estimate  15.4329 -  

SE  0.4876 - - 

p  <2e-16 - - 

Sig.  *** - - 

Dmax Estimate 1.34350 2.18374 - - 

SE 0.09103 0.05533 - - 

p <2e-16 <2e-16 - - 

Sig. *** *** - - 

SDD Estimate -5.88374 -0.22515 - - 

SE 1.04224 0.02529 - - 

p 4.62e-08 < 2e-16 - - 

Sig. *** *** - - 

V Estimate 2.91550 -0.11914 -6.58049 0.32620 

SE 0.45295 0.02559 1.37885 0.07908 

p 2.94e-08 2.02e-05 1.35e-05 0.000124 

Sig. *** *** *** *** 
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Table XII. Height-diameter relationship model 

Model Stat. α0 α1 β0 β1 

H-D Estimate 2.814e-01 3.295e-05 9.863e-01 -2.424e+01 

SE 2.751e-02 1.250e-05 4.977e-01 4.841e+00 

p < 2e-16 0.00884 0.04843 9.38e-07 

Sig. *** ** * *** 
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